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1 Scope 

This document describes the SDN architecture. Its purpose is to guide further detailed activity in 

the various ONF working groups, while also serving as a reference for external communications 

from the ONF. The companion ONF Framework document (not yet published) describes what is 

desired. This document describes how this is to be achieved, at a high level. 

The SDN architecture specifies, at a high level, the reference points and interfaces to the 

controller. The architecture describes a number of functions internal to the SDN controller and 

NE. Specific blocks that perform these functions are illustrated to aid the description, but are not 

per se required in an implementation. The interfaces to these internal functional blocks are not 

specified. 

The specified behavior of the SDN controller or NE is confined to those aspects that are required 

to allow interoperable implementations to be deployed. The architecture is agnostic to the 

protocols across the interfaces (note). 

Note – Candidate protocols for various interfaces include OpenFlow switch (OFS) [2] 

and OF-Config (OFC) [3]. 

The SDN architecture allows an SDN controller to manage a wide range of data plane resources. 

A number of different data planes exist; SDN offers the potential to unify and simplify the 

configuration of this diverse set of resources. 

The architecture also recognizes the reality that if SDN is to be successful, it must be deployable 

within the context of largely pre-existing multi-player environments, comprising many 

organizations or businesses, with the consequent need for policy and security boundaries of 

information sharing and trust. Real-world constraints include the need to co-exist with existing 

business and operations support systems, and other administrative or control technology domains. 

In less complex environments, such as limited scale enterprise networks, suitable functional 

subsets may be profiled from the architecture. 

The SDN architecture recommends that common models and mechanisms be employed 

wherever possible to reduce standardization, integration and validation efforts. This also implies 

utilizing existing standards or accepted best practices where feasible. 

A systems architecture partitions a complex system into modular parts, typically used to manage 

complexity, to allow for independent implementation and component reuse, or to meet other 

technical or business goals. However, there is no such thing as value-neutral design. The choice 

of component partitioning, which interfaces are defined, which protocols are open or proprietary, 

can have a profound influence on the types of services ultimately delivered to the end user [14]. 

Thus, an architecture necessarily makes choices; the choices and their rationale are presented in 

this document. This architecture contents itself with principles, rather than detail, expecting that 

clearly enunciated principles facilitate the myriad decisions required by working groups and 

implementers. At the same time, the architecture recognizes that SDN addresses environments 

sufficiently complex to require future extensions and clarifications. Implementation 

considerations are described, along with topics for further study. 

Specific goals of this document include 

a) Define an architecture for SDN. 



SDN Architecture  Issue 1.0 

7 
 

b) Provide a foundation for information model development. 

c) Describe entities in sufficient detail to permit the derivation of functions and interface 

definitions. 

d) Provide high-level guidance and a framework for activities in the various ONF 

working groups. 

e) Serve as a reference against which to discuss extensions, errors, omissions, and other 

changes that may be appropriate. 

f) Aid in evaluating and comparing various approaches and solutions that claim to 

conform to an SDN architecture. 

g) Facilitate SDN technical orientation for engineers, architects, and solutions specialists. 

h) Offer sufficient value to be utilized across the broader SDN community. 

2 Definitions, abbreviations, and conventions 

2.1 Definitions 

2.1.1 Terms defined elsewhere 

This document uses the following terms defined elsewhere: 

None 

2.1.2 Terms defined in this document 

This document defines the following terms: 

Layer: a stratum in a framework that is used to describe recursion within the data plane. 

Adjacent layers have a client-server relationship. 

Discussion: Forwarding in the data plane is described in terms of a stack of layer 

networks. The layer networks are related by adaptation (which may include multiplexing) 

and termination functions. The format of the data that is carried by each layer network is 

called its characteristic information. The definition of characteristic information 

includes the adapted user information, plus the overhead necessary to operate the layer 

network (for example, detection of errors or misconnections) and in the case of a physical 

layer, may include aspects such as wavelength and symbol coding. See level. 

Level: a stratum of hierarchical SDN abstraction. 

Discussion: This architecture uses level to sharpen the distinction between hierarchical 

abstraction and traffic signal adaptation. See layer. 

Information model: a set of entities, together with their attributes and the operations that can be 

performed on the entities. An instance of an information model is visible at an interface. 

Discussion: This architecture uses object-oriented terms to describe information models. 

SDN controller: a software entity that has exclusive control over an abstract set of data plane 

resources. An SDN controller may also offer an abstracted information model instance to 

at least one client. 
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Discussion: The underlying resources are presented to the controller as an information 

model instance. The resources are manipulated by exercising the methods of the managed 

object (MO) instances. 

An SDN controller may be implemented as any number of software components, which 

reside on any number of physical platforms. The distributed components are required to 

maintain a synchronized and self-consistent view of information and state. This 

requirement bounds the concept of a single SDN controller; software components that do 

not share this characteristic are necessarily external to the controller. (Initialization, 

resilience, synchronization delay considerations are internal to the SDN controller and are 

not part of this definition.) 

Controller plane interface (CPI): the generic interface to an SDN information model instance. 

A CPI instance may be further specialized with a prefix character. 

Discussion: An SDN controller supports three functional interface types: 

 a D-CPI between data and controller planes, across which the SDN controller 

controls data plane resources, 

 an A-CPI between application and SDN controller, across which an application 

receives services from the SDN controller, 

 and a management interface, across which resources and policy may be 

established, as well as other more traditional management functions. 

The same CPI may have different designations depending on the perspective of the 

viewer. 

Any number of D-CPI instances may be supported by an SDN controller that associates 

with multiple data plane entities. Any number of A-CPI instances may be supported by 

an SDN controller in the service of multiple applications. There is one management 

interface. The specification of the D-CPI and A-CPI is independent of the characteristics 

of SDN controller distribution. 

Additional interfaces are not precluded. 

Network element: A group of data plane resources that is managed as a single entity. 

Discussion: A network element (NE) provides a common name space used by the SDN 

controller to access resources that forward, manipulate or store user data. 

The data plane perimeter of a NE is bounded by a set of external interfaces. These 

interfaces may be on physical or logical ports. 

The NE provides at least one logical data-controller plane interface (D-CPI) that allows 

its functions to be managed and controlled by the SDN controller. The logical CPI may 

contain any number of communications channels or protocols. 

This definition does not specify the geographical distribution of the resources that 

comprise an NE. A localized NE might be a self-contained shelf equipped with circuit 

packs, a small server, or a top-of-rack (TOR) switch. A distributed NE may be 

exemplified by a passive optical network (PON) access system. A virtual NE (a VM for 
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example) may be defined on some particular physical component, or may span a number 

of them. 

An optical interface plug-in would normally not be considered to be an NE. 

2.2 Abbreviations and acronyms 

This document uses the following abbreviations and acronyms: 

3GPP Third Generation Partnership 

Project 

ACID Atomicity, consistency, 

isolation, durability 

ACL Access control list 

A-CPI Application-controller plane 

interface 

AIS Alarm indication signal 

API Applications programming 

interface 

BFD Bidirectional forwarding 

detection 

BGP Border gateway protocol 

BIP Bit interleaved parity 

BSS Business support system 

C2C Controller to controller 

CCM Continuity check message 

CFM Connectivity fault management 

CPI Controller plane interface 

CRUD Create, read, update, delete 

DC Data center 

D-CPI Data-controller plane interface 

DDOS Distributed denial of service 

DNS Domain name system 

DOS Denial of service 

DPCF Data plane control function 

EMS Element management system 

ETSI European Telecommunications 

Standards Institute 

GMPLS Generalized multi-protocol 

label switching 

GRE Generic routing encapsulation 

HAL Hardware abstraction layer 

ICMP Internet control messaging 

protocol 

I-CPI Intermediate-controller plane 

interface 

IETF Internet Engineering Task Force 

IP Internet protocol 

IRTF Internet Research Task Force 

ISO International Standards 

Organization 

ITU-T International 

Telecommunications Union – 

Telecommunication 

Standardization Sector 

LAN Local area network 

LLDP Link layer discovery protocol 

MAC Media access control 

MEF Metro Ethernet Forum 

MEP Maintenance association end 

point, Maintenance entity group 

end point 

MO Managed object 

MPLS-TP Multi-protocol label switching, 

transport profile 

NAT Network address translation 

NBI Northbound interface 

NCD Network control domain 

NE Network element 

NFV Network Functions 

Virtualization 

NGMN Next-generation mobile 

networks 
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NMS Network management system 

OAM Operations, administration, 

maintenance 

OFC OpenFlow-Config protocol 

OFS OpenFlow-switch protocol 

OIF Optical Interworking Forum 

ONF Open Networking Foundation 

OSS Operations support system 

OTN Optical transport network 

OVSDB Open vSwitch data base 

PCE Path computation element 

PCEP Path computation element 

communication protocol 

PEP Policy enforcement point 

PM Performance monitoring 

PON Passive optical network 

QoS Quality of service 

RDB Resource data base 

SDH Synchronous digital hierarchy 

SDN Software-defined networking 

SDNC SDN controller 

SDO Standards development 

organization 

SLA Service level agreement 

SNMP Simple network management 

protocol 

STP Spanning tree protocol 

TCA Threshold crossing alert 

TL1 Transaction language 1 

TMF TM Forum 

TOR Top of rack 

VID VLAN identifier 

VLAN Virtual local area network 

VM Virtual machine 

VN Virtual network 

VNE Virtual network element 

WAN Wide area network 

WG [ONF] working group 

2.3 Conventions 

An abstraction is a representation of an entity in terms of selected characteristics, while hiding or 

summarizing characteristics irrelevant to the selection criteria. 

In this document, a virtualization is an abstraction whose selection criterion is dedication of 

resources to a particular client or application. When the context is general, for example when 

speaking of virtual network elements (VNEs), the term virtual may be used even when abstract 

might suffice. Virtual is also sometimes used colloquially to mean non-physical. 

The architecture relies heavily on the client-server model, in which a higher, more general, or 

more abstract entity, the client, receives something of value from a lower, less general or less 

abstract entity, the server. In software terms, the client sends commands to the server, and the 

server sends responses and may send notifications to the client. In a business context, the client is 

the one who pays the bill. Both kinds of client-server relationship can be recursive through any 

number of middlemen. 

At every client-server boundary, there is the possibility of an administrative client-server 

relationship, i.e., a trust domain boundary. Sometimes the term provider is used as the equivalent 

of server, and the terms customer, tenant, or user may be used as the equivalent of client. 

Clients and servers may also be mentioned in discussing layer networks, especially to emphasize 

the common case when a layer characteristic information adaptation (e.g. adaptation between 

TDM and packets) coincides with an administrative or trust client-server boundary. 
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The architecture uses the term layer network (always qualified as server layer network, client 

layer network) to reflect recursion in the data plane ([5], [6]). Data, controller and application 

spaces are distinguished by the term plane, and recursive strata across these planes are called 

levels. 

A tunnel is a server layer network connection that is visible to a client layer network as a link. 

The term tunnel is often used when traffic from a client layer network is handed off across a 

business boundary to a server layer network that transparently conveys the traffic to some distant 

set of client-visible termination points. The controller may also set up tunnels in its own control 

domain, for example by encapsulating Ethernet client layer network traffic into pseudowires. A 

group of tunnels is often referred to as an overlay network or an underlay network, depending on 

whether the perspective is from a client or server respectively. As with any other connection, a 

tunnel may include protection capability. 

The architecture also employs the concepts of controllers and agents, in which the agent is 

responsible for carrying out the commands of the controller and notifying the controller of events 

that are specified by the controller. For clarity, and because its functional responsibilities are 

quite different, a component called a coordinator is responsible for acting on behalf of an SDN 

manager; the term agent is not used in this context. 

The concept of management encompasses operations to support the infrastructure, for example 

operations between SDN manager and SDN controller or NE. This includes such classic 

functions as equipment installation and maintenance, and software upgrade. Management 

functions special to SDN include the allocation of resources and policy to particular SDN clients 

or applications, and the provisioning of information necessary to permit separated functional 

entities to communicate, for example NEs and SDN controllers. 

Management functions may be performed by any number of entities, the details of which are out 

of scope of the SDN architecture. This document abstracts all management functions into a block 

called OSS (operations support system). 

The concept of control encompasses operations performed by a client or performed by a server 

on request by a client, for example operations between SDN controllers and NEs or applications. 

The SDN architecture specifies functional interfaces between software components, without 

constraints on physical location. In general, an applications programming interface (API) can be 

tunneled through a network protocol to support separation, while a network protocol interface 

can be omitted in case of co-residency, to expose an API. References to either APIs or protocols 

are understood to be typical or expected implementations, but not mandatory. 

One such interface class exists between applications and SDN controllers. It is often referred to 

as a northbound interface (NBI) or northbound API, and conventionally carries the implication 

that service invocation flows south across the interface. The boundary between SDN controller 

and application is largely a matter of perspective (note). The SDN architecture uses the term 

application-controller plane interface (A-CPI) to designate this boundary, and avoids the 

northbound terminology. 

Note – For example, a path computation engine (PCE) might exist 

a) as a component of the controller, used by the controller itself, but externally invisible, 
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b) as a component of the controller, exposed as a service to be invoked by external 

applications, or 

c) as an application, an external service to be invoked by a controller. 

Throughout this document, colors are used to denote administrative (e.g., trust) domains. To 

fully clarify the security implications, each color may be regarded as a separate company. Each 

domain is named to match its color: Blue (usually shown as the network provider), Green, Red, 

etc. 

Figure 2.1 illustrates the simple abstract network example used throughout the document. It 

could represent any kind of network, e.g., a transport network, a data center network. The 

network is owned by a provider designated and shown as Blue. Rectangles indicate network 

elements (NEs), whose identifiers imply nothing more than a drawing convenience. Lines 

between NEs designate links; open endpoints indicate data plane handoff points that are suitable 

for connection to network equipment outside the SDN controller’s data plane domain. In a 

number of examples, the external ports are used by two clients, Green and Red, according to the 

endpoint color and labels. 
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Figure 2.1 – An example abstract network 
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3 SDN overview 

This clause describes the architecture in two ways. Clause 3.1 is a high-level descriptive 

overview, while clause 3.2 describes the essentials of the architecture as concisely as possible. 

The remainder of the document derives and explains the architecture, and expands on some of its 

implications. 

3.1 Descriptive overview 

The aim of SDN is to provide open interfaces that enable the development of software that can 

control the connectivity provided by a set of network resources and the flow of network traffic 

though them, along with possible inspection and modification of traffic that may be performed in 

the network. These primitive functions may be abstracted into arbitrary network services, some 

of which may not be presently apparent. 

Network 

element Network 

element

Network 

element

SDN southbound interface

SDN controller

SDN application

SDN northbound interfaces (NBIs)

SDN application

A-CPI: Application-controller plane interface

D-CPI: Data-controller plane interface

Application layer

Application plane

Control layer

Controller plane

Infrastructure layer

Data plane

 

Figure 3.1 – Basic SDN components 

Figure 3.1 introduces the basic SDN components, with terminology similar to that from the 

original ONF white paper, “Software-Defined Networking: The New Norm for Networks” [1]. 

The initial view comprised infrastructure, control and application layers (red text), which are 

designated in this architecture document as data, controller, and application planes (black text). 

The infrastructure layer (data plane, note) comprises network elements, which expose their 

capabilities toward the control layer (controller plane) via interfaces southbound from the 

controller. (In [1], this is called a control-data plane interface.) The SDN applications exist in the 

application layer (plane), and communicate their network requirements toward the controller 

plane via northbound interfaces, often called NBIs. In the middle, the SDN controller translates 

the applications’ requirements and exerts low-level control over the network elements, while 

providing relevant information up to the SDN applications. An SDN controller may orchestrate 

competing application demands for limited network resources according to policy. 

Note – The concept of a data plane in the context of the SDN architecture includes traffic 

forwarding and processing functions. A data plane may include the necessary minimum 

subset of control and management functions. 
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This view requires further development and precision if it is to provide a rigorous technical SDN 

architecture that can inform technically versed network architects inside and outside of ONF. 

This architecture document therefore defines functions, interfaces and components, explains their 

relations and guides the development of information models, while not over-specifying. 

Terminology modifications reflect the fact that some aspects of control inevitably reside in all 

layers, but the interface of interest is that between an SDN controller and its adjacent entities. 

The major horizontal groupings are called planes to avoid confusion with the term layer, which 

is used in the sense of layer networks, for example when packets are mapped to MPLS, further 

into Ethernet, and further into wavelengths. 

With that in mind, figure 3.2 adopts the revised terminology and adds the management function, 

which is often omitted from simplified SDN representations. Although many traditional 

management functions may be bypassed by the direct application-controller plane interface (A-

CPI), certain management functions are still essential. In the data plane, management is at least 

required for initially setting up the network elements, assigning the SDN-controlled parts and 

configuring their SDN controller. In the controller plane, management needs to configure the 

policies defining the scope of control given to the SDN application and to monitor the 

performance of the system. In the application plane, management typically configures the 

contracts and service level agreements (SLAs). In all planes, management configures the security 

associations that allow distributed functions to safely intercommunicate. 

Management

Controller plane

Data plane

SDN controller

Network element (≥ 1)

Application plane

SDN application  (≥ 0)

Management 

functions 

(OSS)

A-CPI: Application-controller plane interface

D-CPI: Data-controller plane interface

 

Figure 3.2 – SDN components with management 

Figure 3.2 summarizes the SDN architecture, with the terminology and reference points used 

throughout the sequel. It shows distinct application, controller and data planes, with controller 

plane interfaces (CPIs) designated as reference points between the SDN controller and the 

application plane (A-CPI) and between the SDN controller and the data plane (D-CPI). The 

information exchanged across these interfaces should be modeled as an instance of a protocol-

neutral information model. 

While customer systems have historically interfaced the network indirectly, by way of the 

provider’s business or operations support systems (BSS/OSS), SDN envisions that customer 
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applications may have dynamic and granular control of network resources through direct access 

to an SDN controller. Recognizing the likelihood of a business boundary between provider and 

customer, it is therefore essential that the architecture recognize a business or organizational 

boundary between the SDN controller plane and the applications that use it. Provider and 

customer exist in different trust domains. 

This architecture document uses colors as a visual aid to emphasize trust domains. Blue is the 

default, and may be thought of as a network provider, while other colors, such as green and red, 

indicate customers, tenants, or even distinct organizational or application entities within the 

overall Blue trust domain. 

Figure 3.2 thus shows only a single trust domain. Figure 3.3 extends the idea to show multiple 

trust domains. Each trust domain is understood to have its own management functionality. Trust 

domains may logically extend into components of other trust domains, as exemplified by the 

green and red agents in the blue SDN controller. 

Note – It is important to understand that code that executes in the red and green agent 

boxes in the controller plane would be installed and managed by the blue administration. 

This is the meaning of the phrase logically extend. 

Management

Controller 

plane

Data 

plane

OSS

SDN 

controller

Network element

(≥ 1)

NE resources

Application

planeSDN 

application  

(≥ 1)

SDN 

application
OSS

OSS

Coordinator

Coordinator Agent (≥ 1)

SDN control logic

(business 

agreements, 

credentials, policy, 

etc.)

A-CPI: Virtual resource 

information model

D-CPI: Resource 

information model

Agent (≥ 0)...

 

Figure 3.3 – SDN overview, with physical data plane 

Figure 3.3 also shows agents and coordinators in the SDN controller and the network elements. 

The agents support the concept of sharing or virtualizing the underlying resources, for example, 

which network element ports are SDN-controlled (as opposed to hybrid or legacy ports), or the 

details of the virtual network that are exposed to the SDN applications, while isolating one 
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customer’s service from another’s. In the SDN controller, different agents may expose control 

over the network at different levels of abstraction (latitudes) or function sets (longitudes). It is 

the SDN control logic’s task to map and arbitrate between the networking requirements from all 

SDN applications and translate them into instructions for the network element (NE) resources 

exposed through the NE agents. The coordinators in both the network element and the SDN 

controller install customer-specific resources and policies received from management. 

Multiple agents may exist at the same time in any one network element and SDN controller, but 

there is only one logical management interface, and therefore only one coordinator per network 

element or SDN controller. 

Clause 4 considers the meaning and implication of the SDN principles in further depth, and 

introduces the major entities whose functions and interactions comprise the architecture. Because 

the SDN controller is at the heart of the architecture, clause 5 further expands controller plane 

functions and interactions, while clause 6 describes implementation considerations. 

The ONF SDN architecture is also summarized in a document entitled SDN architecture 

overview [4]. In the event of discrepancy between this document and the architecture overview, 

this document shall prevail. 

3.2 Concise statement of architectural essentials 

Figure 3.4 shows the major components and interfaces of the SDN architecture. The architecture 

makes no statement about the physical realization of the components. 

Management

Controller plane

Data plane

SDN controller

Network element (≥ 1)

Application plane

SDN application  (≥ 0)
Manager

A-CPI: Application-controller plane interface

D-CPI: Data-controller plane interface

Manager

Manager

 

Figure 3.4 – SDN overview, with physical data plane 

Data plane 

The data plane comprises a set of one or more network elements, each of which contains a set of 

traffic forwarding or traffic processing resources. 

Resources are always abstractions of underlying physical capabilities or entities. 
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Controller plane 

The controller plane comprises a set of SDN controllers, each of which has exclusive control 

over a set of resources exposed by one or more network elements in the data plane (its span of 

control). 

Clause 4.3.5 explains how resources can be shared on a best-efforts or first-come-first-served 

basis. 

Additional interfaces to SDN controllers are not precluded. 

The minimum functionality of the SDN controller is to faithfully execute the requests of the 

applications it supports, while isolating each application from all others. 

To perform this function, an SDN controller may communicate with peer SDN controllers, 

subordinate SDN controllers, or non-SDN environments, as necessary. 

A common but non-essential function of an SDN controller is to act as the control element in a 

feedback loop, responding to network events to recover from failure, reoptimize resource 

allocations, or otherwise. 

Application plane 

The application plane comprises one or more applications, each of which has exclusive control 

of a set of resources exposed by one or more SDN controllers. 

Additional interfaces to applications are not precluded. 

An application may invoke or collaborate with other applications. An application may act as an 

SDN controller in its own right. 

Management 

Each application, SDN controller and network element has a functional interface to a manager. 

The minimum functionality of the manager is to allocate resources from a resource pool in the 

lower plane to a particular client entity in the higher plane, and to establish reachability 

information that permits the lower and higher plane entities to mutually communicate. 

Additional management functionality is not precluded, subject to the constraint that the 

application, SDN controller, or NE have exclusive control over any given resource. 

Administration 

Each entity in a north-south progression through the planes may belong to a different 

administrative domain. The manager is understood to reside in the same administrative domain 

as the entity it manages. 

ONF protocols 

The OF-config protocol is positioned to perform some of the functions that are needed at the 

management interface. 
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The OF-switch protocol is positioned to perform some of the functions that are needed at the D-

CPI and possibly at the A-CPI. 

4 Principles and architectural components 

This clause introduces the principles of SDN, and the functional entities and relationships that 

form the SDN architecture. Subsequent clauses expand on the introductory material to derive 

additional constituent entities and relationships. 

4.1 Principles 

The ONF high-level view of SDN is described in [1]. From this and other sources, several basic 

principles of SDN may be adduced. Their implications are briefly summarized here, and are 

expanded in detail in subsequent clauses. 

 Decoupling of controller and data planes 

This principle calls for separable controller and data planes. However, it is understood 

that control must necessarily be exercised within data plane systems. The D-CPI between 

SDN controller and network element is defined in such a way that the SDN controller can 

delegate significant functionality to the NE, while remaining aware of NE state. Clause 

4.3 lists criteria for deciding what to delegate and what to retain in the SDN controller 

itself. 

 Logically centralized control 

In comparison to local control, a centralized controller has a broader perspective of the 

resources under its control, and can potentially make better decisions about how to 

deploy them. Scalability is improved both by decoupling and centralizing control, 

allowing for increasingly global but less detailed views of network resources. SDN 

controllers may be recursively stacked for scaling or trust boundary reasons, a topic 

described in clause 5. 

 Exposure of abstract network resources and state to external applications 

Applications may exist at any level of abstraction or granularity, attributes often 

described as differing latitudes, with the idea that further north suggests a greater degree 

of abstraction. Because an interface that exposes resources and state can be considered a 

controller interface, the distinction between application and control is not precise. The 

same functional interface may be viewed in different lights by different stakeholders. Just 

like controllers, applications may relate to other applications as peers, or as clients and 

servers. 

The principle of abstracting network resources and state to applications via the A-CPI allows for 

programmability of the network. With information about resources and their states, applications 

are able to specify requirements and request changes to their network services via the SDN 

controller, and to programmatically react to network states. 
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Further, the concept of hierarchically recursive application/controller layers and trust domains 

also allows application programs to be created that may combine a number of component 

applications into a more comprehensive service. 

The SDN architecture clarifies the meaning and implications of these principles by identifying 

the basic functional entities and the information and operations that need to be exchanged over 

various interfaces among them. The architecture further decomposes these functional entities into 

a not necessarily comprehensive set of functional components. 

This architecture incorporates the concept of trust domain boundaries, which is vital to 

widespread commercialization. The architecture defines components entirely within particular 

trust domains, with well-defined reference points to other trust domains. Strong abstraction 

barriers help to protect the commercial and business interests of stakeholders, while recognizing 

and accommodating widely varying trust relationships. The uniformity of the architecture also 

facilitates the design and audit of security measures. 

The high-level model of all vertical SDN architecture interfaces is the exposure of an 

information model instance by a server to a client, upon which the client can perform create-

read-update-delete (CRUD) and class-specific operations. This emphasizes the importance of a 

common information model throughout. From this perspective, the management function is 

responsible for instantiating information models and policies that define the capabilities exposed 

across interfaces between planes, especially across trust domain boundaries. Figure 4.1 illustrates 

the notion that the client-server (or controller-agent) model is applicable at as many levels of 

SDN controller hierarchy as may exist. 

Hierarchical levels serve two purposes. 

1. Scaling and modularity: each successively higher level has the potential for greater 

abstraction and broader scope. 

2. Security: each level may exist in a different trust domain. The level interface is a standard 

reference point for inter-domain security enforcement. 
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Figure 4.1 – Recursive hierarchical roles 

Within the recursive hierarchy, an SDN controller or an application may consider itself as the 

direct controller of an information model instance that represents a suitably abstracted virtual 

network (VN). From this frame of reference, it supports a data-controller plane interface, D-CPI. 

Be it a (virtual) network element, another SDN controller, or even an application, the subordinate 

entity sees the superior entity as an application, supported by an A-CPI. From a global 

perspective, either or both of these interfaces may appear as intermediate CPIs, I-CPIs. It follows 

that, with the exception of physical NEs, a given entity may occupy any of the data, controller or 

application planes, depending on perspective. 

All north-facing interfaces expose managed object instances for client use, but at different levels 

of abstraction. 

At any level of the recursive hierarchy, a resource is understood to be subject to only one 

controlling entity. While an SDN controller may support any number of D-CPI instances, no 

resource on the subordinate plane is subject to more than one of them, nor is the resource subject 

to other SDN controllers (note). Allocation of resources to particular control domains is a 

management function. 

Note – Resource sharing is described in clause 4.3.5. 

Some applications may require all-or-nothing semantics, that is, transactional integrity (the 

ACID property: atomicity, consistency, isolation, durability) (note). Expansion of global and 
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abstract operations invoked by such an application implies transactional semantics at each lower 

level of abstraction, continuing all the way down into the hardware. Further, failed transactions 

must not leave behind stranded resources. Each level of hierarchy is recursively responsible for 

orchestrating the transactional semantics of its subordinate entities. 

Note – Distributed transactional integrity carries a heavy cost, and may not be required in 

all cases. If transactional integrity is not supported intrinsically, implementers should 

consider other means to recover from transaction failures, possibly including manual 

resource recovery. In some cases, inbuilt timeouts may suffice to recover stranded 

resources. 

4.2 Data plane 

The data plane incorporates the resources that deal directly with customer traffic, along with the 

necessary supporting resources to ensure proper virtualization, connectivity, security, availability, 

and quality. Figure 4.2 expands the NE resources view of figure 3.3 accordingly. The NE 

resources block comprises data sources, data sinks and forwarding and/or traffic processing 

engines, as well as a virtualizer whose function is to abstract the resources to the SDN controller 

and enforce policy. This expansion of detail also introduces a master resource data base (RDB), 

the conceptual repository of all resource information known to the network element. 
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Figure 4.2 – NE resources detail 

Software-defined networking concerns itself with traffic forwarding and traffic processing 

functions such as QoS, filtering, monitoring, or tapping. Traffic may enter or leave the SDN data 

plane via physical or logical ports, and may be directed into or out of forwarding or processing 

functions. Traffic processing might be exemplified by an OAM engine, an encryption function, 

or a virtualized network function [27]. Control of traffic forwarding or processing functions may 

be performed by an SDN controller or by separate mechanisms, possibly orchestrated in 

conjunction with the given SDN controller. 
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The data plane implements forwarding decisions made in the controller plane. In principle, it 

does not make autonomous forwarding decisions. However, the controller plane may configure 

the data plane to respond autonomously to events such as network failures or to support 

functions delivered by, for example, LLDP, STP, BFD, or ICMP. 

The interface between data and controller planes (D-CPI) includes functions such as 

 Programmatic control of all functions exposed by the RDB 

 Capabilities advertisement 

 Event notification 

The data plane agent is the entity that executes the SDN controller’s instructions in the data plane. 

The data plane coordinator is the entity by which management allocates data plane resources to 

various client agents and establishes policy to govern their use. Agents and coordinators serve 

the same purpose in every plane of the architecture. Both are discussed extensively in clause 5. 

At the lowest layer of recursion, data plane resources are physical entities (including e.g., soft 

switches). At higher levels of abstraction, however, data plane resources need not be physical 

(e.g., virtual NEs). As with the other planes, the SDN architecture operates on an abstract model 

of the data plane, and as long as the functions advertised by the model are correctly executed, the 

architecture is blind to the difference. Virtualization is discussed in clause 4.5. 

Management chooses which resources in which NEs are to be controlled by a given SDN 

controller, an operation described in clause 5.1. These resources are represented as a set of 

virtual NEs (VNEs), interconnected to form subnetworks. As illustrated in figure 4.14 on page 

37, a VNE may itself be a subnetwork via successive abstraction. 

The architecture imposes no restrictions on the technology of the data plane. The SDN controller 

may be used to program data planes implemented in existing technologies, such as DWDM, 

OTN, Ethernet, IP, etc., or in new data plane technologies that may evolve. 

4.3 Controller plane 

Although control is exercised to varying degrees in other planes (note), the SDN controller plane 

is modeled as the home of one or more SDN controllers. This clause describes the functional 

components of an SDN controller and its relation to other controllers and other administrative 

domains. As will subsequently emerge, not all responsibilities of the SDN controller can be 

allocated to specific functional components; the architecture sees no value in proliferating blocks 

beyond the current level. 

Note – This is the reason for the name controller plane, rather than the oft-used term 

control plane. 
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Figure 4.3 – SDN control logic detail 

4.3.1 Overview 

The architecture does not specify the internal design of an SDN controller. Functional 

components shown within an SDN controller, both above and throughout this document, are 

introduced only for explanatory purposes. 

SDN control is logically centralized. 

 A controller typically has subnetwork scope, spanning more than a single physical NE. 

 There is no resource contention with other entities; the SDN controller regards itself as 

the owner of the virtual resources allocated to it by management. 

Functions and services that are part of a controller’s externally-observable behavior include full 

visibility of the information model instance under its control. Additional functions that may be 

required, depending on circumstances: 

 Topology knowledge and path computation (the controller may also invoke an external 

service for these functions) 

 The creation and maintenance of a further abstracted resource model for its applications, 

with resources bounded by enforced policy. Resource virtualization and control are 

potentially recursive. 

An SDN controller is expected to coordinate a number of interrelated resources, often distributed 

across a number of subordinate platforms, and sometimes to assure transactional integrity as part 

of the process. This is commonly called orchestration. An orchestrator is sometimes considered 

to be an SDN controller in its own right, but the reduced scope of a lower level controller does 

not eliminate the need for the lower level SDN controller to perform orchestration across its own 

domain of control. 



SDN Architecture  Issue 1.0 

24 
 

4.3.2 SDN controller 

The SDN architecture does not specify the internal design or implementation of an SDN 

controller. It could be a single monolithic process; it could be a confederation of identical 

processes arranged to share load or protect one another from failures; it could be a set of distinct 

functional components in a collaborative arrangement; it could subscribe to external services for 

some of its functions, for example path computation. Any combination of these alternatives is 

allowed: the SDN controller is viewed as a black box, defined by its externally-observable 

behavior. Controller components are free to execute on arbitrary compute platforms, including 

compute resources local to a physical NE. They may also execute on distributed and possibly 

migratory resources such as on virtual machines (VMs) in data centers. 

The architecture derives the required external behavior of an SDN controller from the principles 

of SDN (see clause 4.1). 

The principle of logically centralized control is explored in detail below; here, it suffices to say 

that the SDN controller is understood to have global scope, for some value of globe, and that its 

components are understood to share information and state, such that no external block need 

concern itself with conflicting or contradictory commands from the controller. To the extent that 

the OSS affects resources or states, it is subject to the same coordination requirement with any 

SDN controllers that may be involved. 

Multiple manager or controller components may have joint write access to network resources, 

but to comply with SDN principles, they must either 

a) be configured to control disjoint sets of resources or actions, or 

b) be synchronized with each other so that they never issue inconsistent or conflicting 

commands. 

Note 1 – In distributed computing control of distributed network resources, strict state 

synchronization may carry excessive performance or complexity penalties. The implications 

of eventual (rather than strict) state convergence are a topic for further study. 

Note 2 – The assumption of internal consistency in the controller is separate from the 

question of state consistency in the view of the underlying data plane resources. SDN 

controllers are always expected to be able to deal with related events that are asynchronously 

visible from various parts of the infrastructure. 

Without intending to minimize their importance, issues such as bootstrap, synchronization, 

migration, backups, audits, controller software release management, etc., are internal to the 

black-box SDN controller, and are not a matter for the SDN architecture. 

4.3.3 SDN controller functional components 

Having just stated that the SDN controller is a black box, it is nevertheless useful to 

conceptualize a minimum set of functional components within the SDN controller (figure 4.3), 

namely data plane control function (DPCF), coordinator, virtualizer, and agent. Subject to the 

logical centralization requirement, an SDN controller may include arbitrary additional functions. 

A resource data base (RDB) models the current information model instance and the necessary 

supporting capabilities. Clause 5 discusses the RDB and its partitions in detail. 
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Data plane control function 

The DPCF component effectively owns the subordinate resources available to it, and uses them 

as instructed by the OSS/coordinator or virtualizer(s) that controls them. These resources take the 

form of an information model instance accessed through the agent in the subordinate level. 

Because the scope of an SDN controller is expected to span multiple (virtual) NEs or even 

multiple virtual networks (with a distinct D-CPI instance to each), the DPCF must include a 

function that operates on the aggregate. This function is commonly called orchestration. This 

architecture does not specify orchestration as a distinct functional component. 

Coordinator 

To set up both client and server environments, management functionality is required. The 

coordinator is the functional component of the SDN controller that acts on behalf of the manager. 

Clients and servers require management, throughout all perspectives on data, control and 

application plane models, so coordinator functional blocks are ubiquitous. 

Further discussion of managers and management functions appears in clause 4.6. 

Virtualizer 

Note – The network function virtualization concept discussed in ETSI ISG NFV [27] 

differs from the virtualization concept as used in the SDN architecture. In the SDN 

architecture, virtualization is the allocation of abstract resources to particular clients or 

applications; in NFV, the goal is to abstract network functions away from dedicated 

hardware, for example to allow them to be hosted on server platforms in cloud data 

centers. 

An SDN controller offers services to applications by way of an information model instance that 

is derived from the underlying resources, management-installed policy, and local or externally 

available support functions. The functional entity that supports the information model instance 

and policy at an A-CPI (application-controller plane interface) is called a virtualizer. It presents 

the local trust domain boundary to the corresponding agent, which represents the client’s view of 

the information model instance. 

A virtualizer is instantiated by the OSS/coordinator for each client application or organization. 

The OSS/coordinator allocates resources used by the virtualizer for the A-CPI view that it 

exposes to its application client, and it installs policy to be enforced by the virtualizer. The effect 

of these operations is the creation of an agent for the given client. 

The virtualizer may be thought of as the process that receives client-specific requests across the 

A-CPI, validates the requests against the policy and resources assigned to the client, translates 

the request into terms of the underlying resources, and passes the results on to the DPCF and the 

D-CPI. 

Virtualizer and DPCF and possibly other SDN controller functions must collaborate to provide 

features such as notification interpretation, resource sharing, implicit provider services, and 

transactional integrity. 

Clause 4.5 describes virtualization in detail. 
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Agent 

Any protocol must terminate in some kind of functional entity. A controller-agent model is 

appropriate for the relation between a controlled and a controlling entity, and applies recursively 

to the SDN architecture. The controlled entity is designated the agent, a functional component 

that represents the client’s resources and capabilities in the server’s environment. 

An agent in a given SDN controller at level N represents the resources and actions available to a 

client or application of the SDN controller, at level N+1. An agent in the level N-1 data plane 

represents the resources and actions available to the given level N SDN controller. Even though 

the agent’s physical location is inside the server’s trust domain (i.e., on a server SDN controller 

platform), the agent notionally resides in the client’s trust domain. 

Other controller components 

To avoid overspecification, the architecture only describes functions that are required of an SDN 

controller, but does not preclude additional functions. These may take the form of applications or 

features supported by the controller. These features may be exported to some or all of the 

server’s external applications clients, or used internally by the provider administration for its 

own purposes. 

As components of the SDN controller, such applications or features are subject to the same 

synchronization expectation as other controller components. To facilitate integration with third 

party software, the interfaces to such applications or features may be the same as those of others 

at the A-CPI. 

The security aspects of such embedded applications are important to understand. Because they 

execute in the server’s trust domain, they will be subject to the server’s test, verification, audit 

and release management cycle. 

4.3.4 Delegation of control 

Although a key principle of SDN is stated as the decoupling of control and data planes, it is clear 

that an agent in the data plane is itself exercising control, albeit on behalf of the SDN controller. 

Further, a number of functions with control aspects are widely considered as candidates to 

execute on network elements, for example OAM, ICMP processing, MAC learning, neighbor 

discovery, defect recognition and integration, protection switching. 

A more nuanced reading of the decoupling principle allows an SDN controller to delegate 

control functions to the data plane, subject to a requirement that these functions behave in ways 

acceptable to the controller; that is, the controller should never be surprised. This interpretation is 

vital as a way to apply SDN principles to the real world. 

Criteria that encourage the controller to delegate a function to the data plane include: 

 Rapid real-time response required to network events 

 A large amount of traffic that must be processed 

 Byte- or bit-oriented functions that do not readily lend themselves to packetization, for 

example repetitive SDH multiplex section overhead 

 Low-value, possibly repetitive, predictable, well-understood, completely standardized 

behavior, for example encryption, BIP, AIS insertion, MAC learning, CCM exchanges 
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 Survivability or continuity in case of controller failure or re-initialization 

 Functionality commonly available in data plane silicon, e.g., protection switching state 

machines, CCM counters and timers 

 No perceived opportunity to add value by separating the function. 

Assuming the raw data can be made available, an SDN controller always has the option not to 

delegate a control function, but to conduct the necessary operations itself. The criteria listed 

above affect whether such a choice is practical. 

In deciding whether or not to delegate a function, the SDN controller must understand whether 

the behavior of a candidate delegated function fully satisfies its needs. This may require inbuilt 

or configured knowledge and/or query of candidate functionality and capability. 

Notifications from delegated functions are recommended to follow a publish-and-subscribe 

model. Examples of notifications: 

 A delegated control function may be asked to report 

o State and attribute value changes, such as port up/down (operational state: 

enabled/disabled), 

o Threshold crossing alerts (TCAs) against performance monitoring (PM) counters, 

o Hardware failure, recovery or installation, inasmuch as such activities affect the 

resources under the SDN controller’s purview, 

o Manual and automatic protection switching events and results. 

 The delegated control function in the data plane may execute standardized protocols and 

report intermediate or final results, exceptions or state changes. Examples include 

o Traffic encryption, including key exchange and update 

o CFM: 802.1ag or BFD 

o 802.1X authentication agent 

o GMPLS, providing the SDN controller with signaling access across 

administrative domain boundaries where SDN may or may not be supported 

4.3.5 Shared resources 

The data plane model of clause 4.2 assumes that resources are dedicated to clients or applications. 

In a dedicated resource model, there is limited opportunity to increase the usage efficiency of 

underlying resources, which is one of the anticipated benefits of SDN. One way to resolve this 

issue is contractually agreed best-efforts resource sharing, possibly with prioritized and weighted 

traffic contracts. An extension of the shared-resource feature is the possibility that the provider 

could maintain a pool of uncommitted resources for on-demand allocation (and billing) to clients 

on a first-come, first-served basis, or on a pre-negotiated schedule. 

Maximizing resource usage implies that the resources in question may be oversubscribed. When 

a client requests a non-dedicated resource, the available performance may be less than desired, or 

the resource request may fail completely. Accordingly, the client must be prepared to deal with 
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exceptions. The acceptable degree of shared resource unavailability may be contractually 

committed by a provider to a client. 

Another form of resource sharing occurs when some fraction of a resource is committed to each 

of several clients, for example 20% of the bandwidth of a link. This cannot be represented in the 

simple model that a client owns the entirety of some managed object instance. Some such 

resources may be allocated statically, rather than on demand, and may be immune to 

oversubscription. 

The SDN controller has the responsibility to administer resources that are shared by more than 

one client or application, whether static or dynamic, taking a common view of the commitments 

made to the concerned clients. Changing requests and releases of shared resources may trigger 

reoptimization across the provider’s network. The architecture does not allocate this 

responsibility to particular functional components of the SDN controller. 

4.3.6 Multiple administrative domains 

Figure 4.4 illustrates a case in which each of several administrations owns its own network, 

which are mutually interconnected. The topology is the same as in figure 2.1, but the colors have 

been changed to show different ownership of the various subnetworks. 
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Figure 4.4 – Network with multiple owners 
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Figure 4.5 organizes these subnetworks into administrative domains (note), and abstracts the 

view to show only matters of concern to Red. That is, Red sees full detail of its own NEs and 

ports, but the Blue and Green domains are abstracted to the simplest possible representation. 

Note – Ownership is always a criterion for an administrative domain grouping. Network 

owners may define subordinate administrative domains for other reasons, for example 

scalability or technology. 

Assume that there exists an SDN controller (SDNC) for each of the administrations Red, Blue, 

Green. 
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Figure 4.5 – Administrative domains of interest to Red 

Figure 4.6 illustrates the options for Red’s SDN controller associations. 
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Figure 4.6 – Organization options 

(a) Green may offer a service that seamlessly encompasses both Blue and Green 

domains. Blue resources are leased by Green on behalf of Red; Red has no 

business relationship with Blue, and interacts with Blue resources only by way of 

the passed-through virtualization provided by Green. 

(b) There is no particular reason for Red to prefer Green as its service provider. The 

business and virtualization relationship could equally be in the other order. 

(c) Red may have a contractual relationship with both Green and Blue. In this case, 

Red has visibility of the (three) links between Green and Blue domains, and 

expects to have some level of control over them. The finer granularity of this view 

may or may not permit Red to optimize its use of Green and Blue resources, 

according to criteria of its own choice, for example monetary cost, availability, 

latency. 
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In a fourth option, Red may have data plane handoff points in, or possibly transit connections 

through, administrative domains with which it has no SDN programmatic relationship (imagine 

that Blue did not offer SDN control visibility to its peers). The Red SDN controller may see this 

part of its network as statically provisioned connectivity, i.e., as a set of tunnels, or it may run 

conventional routing and signaling protocols to learn about reachability and establish 

connectivity to and through such domains. 

Other clauses of the architecture document consider the case when an SDN controller offers 

services via its A-CPI, and in which the client for such services is in fact another SDN controller. 

As shown in figure 4.7, the (White) client controller, or a network-aware application, may 

orchestrate a number of server controllers. When server controllers are orchestrated from a 

common point, there is, in principle, no need for the server SDN controllers to communicate 

among themselves. Even here, however, optimizations may be available if the client controller 

enables limited communications between server controllers. The principle to be applied is that of 

logical centralization: the client controller may delegate control functionality elsewhere, as long 

as it retains full awareness of all state that is of interest to itself. 
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Figure 4.7 – Common controller coordination example 

4.3.7 Controller-to-controller coordination 

This clause further considers the case in which a number of SDN controllers exist as peers, but 

without overall orchestration from a superordinate SDN controller. Reasons to separate SDN 

controllers into distinct peer domains may include any combination of the following 

considerations: 

 Controllers may be from different vendors who have not achieved full interoperability 

 Controllers or underlying infrastructure may be owned or operated by different 

administrative organizations 

 Controllers may have different technology or service functionality 

 Scalability of network node count or geographic span, including the distinction between 

WAN and LAN 

 Others 

In the general case, a telecommunications service traverses multiple data plane network control 

domains (NCDs), which may include domains that are not under SDN control. These services 

require coordination between the associated SDN controllers, and also with non-SDN 

management, control or signaling. Peer-to-peer information exchange is generically referred to 

as controller-to-controller (C2C) communication (note). 
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Note – Controllers in a client-server relationship (as above) are also communicating, but 

the term C2C implies a peer-to-peer arrangement. 

Figure 4.8 illustrates a simple set of network control domains NCD1..NCD4, together with their 

SDN controllers. In a hybrid of the previous arrangements, client White is shown with a direct 

relationship to Blue and Green, but only an indirect relationship to Red. NCD3 is exemplified as 

a domain without SDN control; services that terminate in NCD3 or traverse NCD3 must employ 

existing signaling or routing protocols (see below) or pre-negotiated agreements. 
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Figure 4.8 – Peer-peer controller coordination example 

When controllers communicate across administrative domain boundaries that are also business 

boundaries, security and contractual issues of trust and information hiding become vital. 

Information to be exchanged between controllers may include the following: 

 SDN controller adjacency and capability discovery 

 Data plane neighbor and topology discovery, to the extent agreed by policy 

 State and attribute information, including the ability to subscribe to state and attribute 

change notifications, as agreed by policy 

 Forwarding-relevant information, such as reachability at one or more layers 

 Path computation information such as route cost, protection or restoration policies 

 Other information such as OAM configuration, QoS assessment and reporting, usage 

information for billing 

Operations may need to be synchronized in at least soft real time, for example when setting up a 

loopback point in one domain, then invoking a loopback test in a different domain, and finally 

releasing the loopback point. 

These information exchanges are generally compatible with those of non-SDN network control 

domains, which use existing protocols (note). As of today, no C2C use case requirements have 

been identified that cannot be satisfied with existing protocols, possibly with minor extensions. 
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Feature negotiation and policy exchange are possible areas for further investigation. The need to 

develop a new protocol for SDN C2C purposes is a topic for further study as SDN matures. 

Note – Security for C2C associations that use existing protocols is understood to be a 

matter of existing specification and best practice. If new protocols were to be proposed, 

security considerations would be an important aspect of their standardization. 

4.4 Application plane 

Figure 4.9 expands the SDN application block from figure 3.3. 

SDN principles permit applications to specify the resources and behavior they require from the 

network, within the context of a business and policy agreement. The interface from the SDN 

controller to the application plane is called the application-controller plane interface, A-CPI 

(note). Figure 4.9 shows that an SDN application may itself support an A-CPI agent, which 

allows for recursive application hierarchies, as explained in clause 4.1. Different levels of an 

application hierarchy are described as having various latitudes, depending on their degree of 

abstraction. 

Note – The SDN community often calls the A-CPI a northbound interface (NBI) or 

northbound API. Refer to clause 2.3. 
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Figure 4.9 – SDN application detail 

An SDN application may invoke other external services, and may orchestrate any number of 

SDN controllers to achieve its objectives. The OSS link and the coordinator function recognize 

that, like the other major blocks of the architecture, SDN applications require at least a certain 

amount of a priori knowledge of their environments and roles. 

 An application plane entity may act as an information model server, in which case, it exposes 

an information model instance for use by other applications. Formally, the other applications 

are clients, which communicate to the SDN application server agent shown in figure 4.9. 
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 An application plane entity may act as an information model client, in which case it operates 

on an information model instance exposed by a server entity. The server entity may be an 

SDN controller or a subordinate application. 

 An application plane entity may act in both roles simultaneously. For example, a path 

computation engine (PCE) may rely on an SDN controller for virtual network topology 

information (maintained in a traffic engineering database), while offering the SDN controller 

a path computation service. 

Activity across the A-CPI typically includes queries or notifications about the state of the virtual 

network, and commands to alter its state, for example to create or modify network connectivity 

or traffic processing functions between network client layer (data plane) handoff points, with 

some specified bandwidth and QoS. The A-CPI may also be used for additional functions, for 

example as an access point to configure a service chain through one or more layer 4-7 services 

(note), or as an input to control virtualized network functions. 

Note – In terms of network behavior, service chaining is just the steering of traffic 

through an appropriate set of components. The added value at an A-CPI may be the 

ability to specify a sequence of component functions, expecting that the SDN controller 

will select the optimum instances of these functions and apply the pertinent traffic 

forwarding rules. The application could also support programming of component 

attributes, or even instantiate new virtualized network functions at optimum points in the 

topology. 
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Figure 4.10 – Multi-plane end user system example 

Figure 4.10 illustrates the possibility that an end user system may present both data plane and 

application plane aspects. An end host or a network appliance may fit this model. A firewall or 

DDOS detector would exemplify the network appliance case, and a customer terminal that was 

capable of signaling its existing or desired state is an example of the end host case (note). 
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Note – For example, the Microsoft use case in which Lync user terminals are capable of 

reporting or requesting service characteristics, whereupon a centralized coordination 

function may instantiate responses in the network resources. 

Characteristics of the A-CPI are considered in more detail below (clause 6.8). 

4.5 Virtualization 

SDN control and management must be designed to operate on abstracted and virtualized 

resources, which ultimately encompass underlying physical resources, possibly through several 

successive levels of virtualization. This is done by way of a common information model that 

includes representation of physical hardware as a special case. This clause describes the 

capabilities necessary to virtualize network resources. 

Recall that the data plane of an SDN is a network, a set of nodes that forwards traffic and may 

also produce, consume, store, or process traffic. Its nodes are network elements (NEs) 

interconnected by links. The NEs offer external data plane ports to client equipment and other 

networks. Because some of the anticipated benefits of SDN are based on centralized control, an 

SDN controller will generally control more than one NE. 

In the following text, the abstraction and virtualization process is explained in a step-wise 

sequence, starting with a resource graph from a hypothetical provider environment (Blue), and 

extending to virtual network representations for specific customers, Green and Red. 

Figure 4.11 reiterates figure 2.1 to illustrate the example network, owned by Blue. Rectangles 

indicate network elements (NEs). Lines designate links, which may be composite, which may be 

transitional, involving the same or different types of characteristic information, which may be 

protected, and which may be virtual (i.e., network client layers supported by further underlying 

network server layers). Open endpoints indicate data plane handoff points that are suitable for 

connection to external network equipment. The external ports are used by two clients, Green and 

Red. 
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Figure 4.11 – An example abstract network 

Considering the scale and complexity of a real network, it is clear that figure 4.11 is already an 

abstraction of underlying physical resources. 

Reminder: an abstraction is a representation of an entity in terms of selected 

characteristics, while hiding or summarizing characteristics irrelevant to the selection 

criteria. A virtualization is an abstraction whose selection criterion is dedication of 

resources to a particular client or application. 

In figure 4.11, the selected abstraction characteristics reflect the intention to simplify the 

representation of a real-world network. 

Figure 4.12 illustrates the same underlying network abstraction, now virtualized by provider 

Blue for client Green. The assumption here is that Blue reserves non-zero resources for Green in 

each of its NEs and links. The network topology therefore appears to be the same, but the NEs of 

figure 4.11 have been replaced with virtual NEs, VNEs (note). Ports previously shown for client 

Red have disappeared. For privacy reasons, Blue’s commitments to Red must be concealed from 

this view. 

Note – The Blue NEs may already themselves be virtual. 
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Figure 4.12 – Provider Blue’s virtual network for client Green 

The difference appears pictorially in the colors of the VNEs. In this case, a VNE represents a 

subset of the resources of an NE, the subset committed to client Green. Likewise, though not 

shown pictorially, the capacity and capability of links and exposed ports will have been reduced 

to retain only resources dedicated to Green. 

As shown, the underlying network contains redundant resources that can visibly accommodate 

many of the visibly possible link and node failures. But suppose client Green was not prepared to 

pay for redundancy. Then, rather than the virtual network (VN) of figure 4.12, provider Blue 

might allocate resources only for a reduced VN as shown in figure 4.13, which provides the 

necessary connectivity, but without visible route redundancy (note). 

Note – Because links may be protected internally, it cannot be asserted that the resulting 

Green VN has no redundancy, but it clearly has lower availability than that of the 

previous topology. The cartoon is intended to suggest that the simpler VN may be 

unprotected. 
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Figure 4.13 – Reduced cost, reduced availability provider VN for client Green 

So far, the virtualizations all exist in the Blue network provider space, and serve as the means by 

which Blue identifies resources dedicated to client Green. 

A VN (subnetwork) may be abstracted into a yet simpler VN. Provider Blue needs an internal 

map of all resources dedicated to client Green. However, Green may not care to see all of these 

resources; they may well be irrelevant to Green’s network usage scenarios. Additionally, as a 

policy matter, Blue may be unwilling to expose details of its network. Therefore, the VN visible 

at the interface from Blue to Green may be further abstracted, i.e., be less detailed than Blue’s 

own view. Figure 4.14 illustrates a possible VN offered by Blue to Green at their common CPI 

(see also figure 4.16). Each VNE is an aggregate of the resources reserved by Blue in the more 

granular model of figure 4.13. 
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Figure 4.14 – Client Green’s view of simpler VN 

To summarize: the Blue SDN controller needs to know about both levels of abstraction, but the 

view of figure 4.13 is for its internal use. Naming of these internally reserved resources is a 

private matter for the Blue SDN controller. The managed object instances (ports, virtual NEs) 

visible to the Green SDN controller at the CPI (figure 4.14) are named according to the 

agreement between Blue and Green. Identifiers may be contractually pre-negotiated or 

negotiated over the CPI at run time. 
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As shown in figure 4.15, Green could also contract for the simplest possible VN, a single VNE 

as shown by the rectangle (client’s view in green, provider’s underlying view in gray). Client 

Green might specify that the VNE be called Green-1. 

Green-1 G15
G16

G24
G25

G1
G4

G18 G21

 

Figure 4.15 – Client Green’s view of simplest possible VN 

Suppose Green wishes to create a forwarding rule between, for example, its ports G1 and G25 

(or between IP subnets accessible through G1, G25). To Green’s SDN controller, given the 

Green-1 abstract NE of figure 4.15, this is a single forwarding rule in a single switch. Blue’s 

SDN controller must intercept the command that establishes the forwarding rule, reinterpret it in 

the context of the virtual subnetwork (figure 4.13) dedicated to Green, then further map it onto 

its own Blue network (figure 4.11). If Green’s action is expressed as an IP forwarding rule, Blue 

may implement the request in the underlying network as any combination of rules in L3 

forwarding nodes, mappings into existing tunnels, or mappings into newly created tunnels. The 

following paragraphs consider these options in further detail. 

One of the important reasons for virtualization is that Blue must isolate Green’s traffic from that 

of other clients, often without the knowledge or active cooperation of Green. There are three 

cases, any of which may be used along a particular link in the end-to-end path. 

(a) Case 1: Isolation may be achieved by physical means; e.g., if Green contracts for 

dedicated media, wavelengths/spectra or tributary time slots. 

(b) Packet traffic may need to be isolated if it cannot be guaranteed that there are no 

address space overlaps among the different clients. Guarantees of address 

uniqueness may need to be enforced with access control lists (ACLs) at data plane 

handoff points. If encapsulation is needed, it can be performed in either of two 

ways: 

i. Case 2: By way of an additional encapsulation layer, for example with 

service VLAN IDs (S-VIDs) [10]. 

ii. Case 3: Within the same layer by way of a mapping such as network 

address translation (NAT). 

The choice of encapsulation is a matter of Blue policy; its details are invisible to 

Green. At network points chosen by Blue, possibly but not necessarily the edge 

devices (the resources underlying ports G1 and G25), Blue adapts ingress traffic 

from Green to its isolated form, and reverses the adaptation for egress traffic to 

Green. The Blue infrastructure forwards encapsulated traffic across the network in 

Blue’s address space. 

Encapsulated isolation may take the form of tunnels in the Blue infrastructure. These are 

subnetwork connections in the Blue server layer that appear as simple links to Green. To 

establish a forwarding relationship, Green need only map traffic into the near- and far-end link 
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endpoints of the proper tunnel. Blue may pre-configure subnetwork connections as part of the 

VN it offers Green. If Blue can intercept Green’s forwarding requests, Blue may also create 

tunnels dynamically. In either case, Blue would accompany tunnel creation with the necessary 

support features, for example OAM and protection. Tunnel setup and operation is invisible to 

Green. 

The internal users of administration Green may have differing requirements for the use of their 

VN, for example simple connectivity requests (as above) or more detailed control. Figure 4.16 

illustrates how Green may internally perform further abstraction from the simple VN of figure 

4.14 to the single-NE view of figure 4.15. As shown, this abstraction (and its subsequent 

interpretations) can be done entirely within Green’s own space, and completely without the 

knowledge of Blue. This might be appropriate if some Green applications care only about 

connectivity between edge ports, and other applications deal with performance optimization. 
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Figure 4.16 – Green’s further abstraction, and VNs for Red 

Figure 4.16 also illustrates how Blue may allocate resources that expose completely different 

VNs to another client, Red. 

Suppose Green decided to upgrade to a higher availability service, say with (visible) route 

redundancy. Provider Blue would revise the underlying VN to restore some or all of the 

redundant resources from figure 4.12, but there would be no need to update the VN exposed by 
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Blue to Green at the CPI. Green would see no change except in observed availability, exactly as 

expected. 

Further data plane considerations 

The networks illustrated above have been severely abstracted to highlight the points under 

discussion. A less abstracted view might reveal important additional information, for example 

that the subnetworks were multi-layer (note), meaning that the ports and links might (or might 

not) support different characteristic information. Links might be composite, and might have 

multiple endpoints. Adaptation between layers might be required. A given layer might have 

layer-specific overhead that needed to be controlled, specifically for operations, administration 

and maintenance (OAM). Redundancy might be exploited for survivability at one or more layers. 

Note – Separate controllers for each technology in a layered network are sometimes 

proposed, for example between packet and optical layers. This architecture neither 

specifies nor precludes technology layer separation. 

These aspects are important, but require extensive additional specification, and are thus covered 

in architecture and information models to be developed in domain-specific ONF working groups 

(WGs), e.g., optical transport, and wireless and mobile WGs. From the perspective of this 

document, it suffices to recognize the need for state and structure well beyond that implied by 

the simple view. As noted in clause 4.3, some of this state and structure may be delegated from 

the SDN controller into data plane hardware and software. 

4.6 Management 

Management covers infrastructure support tasks that are not to be done by the application, 

controller and data planes themselves. Management may also perform operations that the 

application, controller- and data planes are restricted from doing by policy or for other reasons. 

Perhaps the single most important reason to prevent a task from being executed by SDN 

components is that the SDN controller may reside in a customer trust domain, while business 

reasons mandate that core management and support functions be done within the provider trust 

domain. Although an agent policy could be devised that completely trusted its controller, the 

transparency policy and policy enforcement software would nonetheless have to be installed by 

the provider’s manager. For security reasons, the default behavior is recommended to be to 

expose nothing, rather than everything. 

The SDN architecture recognizes classical management functions such as equipment inventory, 

fault isolation, software upgrade and the like, but regards them as largely out of scope of SDN. 

One of the perceived benefits of SDN is allowing clients (in foreign trust domains) to perform 

many of the actions that are today performed by management systems. The traditional OSS 

interface is expected to play a smaller role over the course of time, as customer applications take 

on more responsibility via SDN controllers. 

Within the scope of SDN are the SDN-specific management functions, namely recording and 

expressing business relationships (policies) between provider and client, and configuring SDN 

entity environment and initialization parameters. This includes coordinating data plane handoff 

points, identification conventions, reachability and credentials among logical and physical 
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entities. The SDN architecture requires that this information be configured into the relevant SDN 

NEs, controllers, and applications, but does not specify the nature or structure of the OSSs. 

In the general case, each client-server pair of data plane, controller and application level entities 

lies in a separate trust domain (see figure 4.1). Where a trust boundary exists in the SDN 

hierarchy, a corresponding trust boundary also exists in the management domain. Managers – 

called OSSs in this document – in different trust domains may need to exchange information, but 

this exchange is beyond the scope of the SDN architecture. 

Two management roles are recognized: server manager and client manager. The responsibilities 

of the server manager are not the same as those of the client manager. 

Responsibilities common to both managers 

 Configuration of separate entities such that they can communicate with each other. This 

may include information such as identity, protocol selection, reachability, and security 

policy and credentials. 

Responsibilities of the server manager 

 Instantiation of an agent in the server environment, representing a client-specific 

environment in a real or virtual infrastructure. This includes resource allocation and 

policy installation, and possibly downloading of custom or special feature modules. 

Client-specific configuration could include a choice of protocol or release level (e.g., 

OpenFlow-switch 1.3). SDN control of the server’s own interest is accommodated by an 

agent in the server’s trust domain (note). 

Note – Clause 5 describes agent functions in detail. 

 Updating client-specific resource allocation and policy over the course of time. This may 

result from events such as business renegotiation or network build out, or from the 

request and release of resources covered by contract but delivered and billed on demand. 

A special case is the deletion of everything related to a given client when the business 

agreement terminates. 

 Auditing the compliance of resource allocations and policies to the business 

commitments. This includes confirming that resources are not double-booked and that the 

traffic of separate clients is mutually isolated. Tools for this purpose include notifications, 

for example of security alarms or connectivity faults. 

 Subscribing to notifications and collecting statistics for purposes of SLA monitoring, 

security monitoring, fault management, billing, network planning, and others. These are 

existing functions that are expected to remain unchanged except perhaps in their details. 

Responsibilities of the client manager 

The client manager has much the same responsibility as the server manager, but from the inverse 

perspective. 

 The client SDN controller (or application) may require information that cannot be 

discovered from the server, in particular about data plane adjacencies on its external 

network ports. If so, the manager must supply the information. 
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 Although the client SDN controller receives a view of the resources from its agent on the 

server, the client manager may wish to instantiate its own view of the contracted 

resources and policy. This could facilitate reconciliation or audit by the client SDN 

controller. Auditing of expected versus discovered resources and actions may be an 

important security feature. 

 Both before and during operation, the server manager seeks assurance that the client gets 

no more service than contractually specified, while the client manager seeks assurance 

that it gets no less service than contractually specified. The client manager may poll for 

performance or state information, or subscribe to run-time exception and performance 

monitoring notifications from its agent on the server controller to help with this 

assessment. 

A manager itself may be a business or operations support system (BSS/OSS), a network 

management system (NMS), or even an element management system (EMS). This document 

uses the term OSS to include all of these options. Further detail of OSS capabilities and inter-

OSS communications is beyond the scope of this architecture. 

As a special case, client and server may exist within the same trust domain, and it may be 

possible to simplify some of the architectural border crossings. Figure 4.17 illustrates a common 

management interface within a single trust domain, via the SDN controller. 
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Figure 4.17 – Proxy management communications 

The dotted lines in figure 4.17 illustrate how, within a common trust domain, the SDN controller 

may proxy management communications between an OSS and applications or network elements. 

This exemplifies a common case of SDN deployments in data centers (DCs). A typical 

application would be a cloud/DC management system, which is in the same trust domain as the 
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network elements and the SDN controller (note). The SDN controller implements some of the 

required management functions directly, and proxies those implemented elsewhere. 

Note – In this case, the cloud/DC management system would itself be responsible for 

security considerations related to the separate trust domains of the various cloud/DC 

tenants. In this sense, it acts as an SDN controller itself. 

4.7 Information model 

A variety of protocols may be used between the various components of a software-defined 

network, to serve a variety of purposes. While it is clearly desirable to minimize the number of 

protocols, the architecture does not mandate any particular protocols. What is essential is that all 

communicating entities share a common information model. This is not to be confused with a 

common data representation [7], which is a protocol issue. Indeed, when context permits, 

elements of the information model may be understood implicitly, rather than conveyed explicitly 

by protocol. 

This architecture models SDN operation as the manipulation of managed object instances (MOs) 

across the various interfaces. Operations on MO instances include the familiar CRUD: create, 

read, update, delete, as well as invocation of methods defined on the MO classes and 

subscription to their notifications. As such, information modeling is a core function of the 

architecture and its evolution over time. 

Information models are a key component in describing the architecture. This architecture 

recommends judicious re-use of existing information models. It is not necessarily expected that 

models from wider industry sources be directly and completely imported into an SDN 

information model. Adaptation to the SDN context may take into account both the special 

features of SDN and evolving best practices. However, the resulting SDN model should be 

chosen and documented such that it can be readily understood and used outside the SDN 

community. This compresses the learning curve and encourages migration by facilitating 

integration into existing infrastructure. 

New information modeling requirements that may emerge from ONF work should be fed back 

into industry standards forums as the preferred route toward standardization. 

5 Control functions and interactions 

Assisted by coordination, control is at the heart of SDN. Focusing on these, as well as on 

recursion, this clause adds another level of detail to the principles and components introduced in 

clause 4. To summarize the difference between coordination (management) and control: 

 The coordinator executes functions associated with the allocation of resources to clients 

and the bounding of these resources by policy. These functions occur within a single trust 

domain. 

 Once a resource has been assigned to a client, it is effectively owned by the client’s SDN 

controller (DPCF), which may use it in any arbitrary way permitted by the agreed policy. 

Controllers are modeled as residents of trust domains separate from their controlled 

resources. 
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For clarity, the text of this clause is organized into four progressively more complex scenarios, 

each with capabilities greater than the last. Accordingly, some of the material is repetitive. The 

architecture supports the most complex of these scenarios, but it is understood that the 

complexity of a particular implementation may be reduced to a greater or lesser extent, 

depending on the business or organizational circumstances of the stakeholders. 

The four scenarios are: 

1. Single player SDN provider 

2. SDN provider with SDN clients, with underlying network exposed 

3. SDN provider with virtualized network, non-recursive 

4. SDN provider with recursive virtualized network 

As before, administration Blue is taken to be the lowest-level infrastructure owner, while Green 

and Red represent customers. 

5.1 Single player SDN provider 

Ultimately, all networking is based on a set of physical network elements (NEs). It is useful to 

start at this level, and consider the set of NEs that forms one or more subnetworks within the 

control domain of a single SDN controller. Figure 5.1 illustrates such a subnetwork, owned and 

operated by provider Blue. NEs 1..n constitute the network control domain (NCD) of SDN 

controller SDNCB (subscript B for Blue). Everything in this clause occurs in the Blue trust 

domain. 
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Figure 5.1 – SDN control of physical switches 

Numbered circles indicate the logical sequence of activity when this network is placed under 

SDN control. 
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1. Each of the n NEs is understood to contain a coordinator function. It is unspecified how 

the coordinator is brought into existence. It may be instantiated by the Blue OSS, for 

example, or may exist as an artifact of the NE’s software load. 

By way of the coordinator, the Blue OSS instantiates an agent on each NE, here 

designated agent 0 (note). The Blue OSS also instantiates a virtualizer to support agent 0; 

the virtualizer’s function is to map resources assigned to agent 0 onto the hardware 

abstraction layer (HAL) of the NE. 

Note – The value 0 is a convenient designator for this document, as a way to 

represent the provider’s interest, not to be understood as a special reserved 

identifier. 

2. Each of the n NEs is understood to contain its own master RDB, which models all of the 

resources in the NE (note 1). By way of the coordinator, the Blue OSS allocates resources 

from the master RDB to agent 0 (note 2), where they appear as an agent-local RDB. An 

agent represents the specific resources dedicated to a particular client, and represents an 

execution context for that client. In this case, agent 0 represents Blue’s ownership of the 

NE’s SDN resources. 

Note 1 – It is unspecified how the NE’s master RDB is initially populated, or 

indeed whether it even exists as a separate entity. It may be at least partly 

downloaded by the Blue OSS, for example, or may be populated by a discovery 

function in the NE at initialization time, or may simply be a view onto the NE’s 

hardware and state. 

Note 2 – Not all NE resources need necessarily be subject to SDN control. One 

example of permanently off-limits resources is the identity, reachability and 

credentials package necessary for the NE to contact its OSS. Another example 

would arise if unsynchronized non-SDN protocols were responsible for some 

disjoint subset of the NE’s resources (hybrid model). 

3. The Blue OSS instantiates an SDN controller SDNCB on some platform or set of 

platforms. Its functions include a coordinator and a DPCF. Blue also initializes a 

controller master resource data base RDB in SDNCB, and may partially or completely 

populate it from its own resource planning and inventory data base (note). 

Note – NE and topology discovery may be available from the network itself (step 

5). It would be appropriate for SDNCB to reconcile information discovered from 

the actual network against the provisioned RDB, and raise exceptions for positive 

disagreements. 

4. Blue provisions controller and NE coordinators with the information they need to 

establish communications. Vital information includes identity, reachability (IP address, 

DHCP parameters, etc.), and security policy and credentials. 

5. The NEs and the SDN controller establish communications. SDNCB reconciles its master 

RDB against the underlying resources, i.e., the union of the RDBs in the various NE 

agents 0. SDNCB may also discover or audit network topology or other meta-information 

that is not directly available from the NE agents 0. 
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These resources are now available for SDNCB to use in any way it desires. Interaction 

between controller and NE is modelled as a series of operations on the information model 

local to the agent 0 RDB in the NE. 

6. By way of the coordinator in SDNCB, the Blue OSS instantiates agents with virtualizers 

in SDNCB, as needed to support the applications that it intends to offer to its application 

clients, and populates each with resources from the SDNCB master RDB, along with 

policy to govern the capabilities that it supports for that application client. 

At this point, the Blue network is ready for SDN-controlled service to its application customers. 

As such, this configuration may represent the final target of some deployments (note). It is 

largely compatible with first-generation SDN specifications and implementations, which mostly 

contemplate implementation directly on hardware, and do not emphasize business or trust 

boundaries between control functions and the network. 

Note – Figure 4.17 and figure 5.3 illustrate cases in which this configuration supports 

higher-layer applications that deal with multi-tenant issues. 

Blue may also offer traditional telecommunications services from this configuration, that is, 

services controlled via a traditional management model, rather than by the SDN application 

model. Blue would be able to exercise SDN control of its NEs, but would not directly support 

network-aware applications. This could be a useful step in migrating the overall network toward 

SDN. 

5.2 SDN provider with SDN clients, with underlying network exposed 

Figure 5.2 shows the next step in the evolution of the scope and capability of the overall network. 

Here, provider Blue offers a virtual network SDN service to client Green, whose designator and 

subscript is G. The exposed virtual network is abstracted to include only selected ports and their 

supporting resources, but it rests directly on Blue’s physical network elements. The VN exposed 

to Green could therefore be that of figure 4.12 or figure 4.13, but not the view of figure 4.14 or 

figure 4.15. Subsequent clauses relax this constraint. 

Note – This configuration is not recommended for deployment in practice; it is included 

for explanatory reasons. Clause 5.3 describes the preferred implementation, which 

removes complexity from NEs in favor of the SDN controller, removes the constraint that 

a client virtual NE be contained in a single provider NE, and does not require direct 

connectivity between untrusted client SDN controllers and provider infrastructure. 
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Figure 5.2 – Basic SDN network, adding client Green 

Before network service is possible, Blue and Green must conclude a business and technical 

agreement. The ways in which this negotiation occurs are beyond the scope of this document. It 

is understood that both Blue and Green OSS are equipped with knowledge of their mutual 

technical commitments. As well as the necessary resources, the business agreement specifies 

data plane handoff points between Green’s and Blue’s networks. In some cases, these may be 

discoverable from the network itself, but they are usually expected to be provisioned into the 

controllers from the OSS (note). 

Note – As a matter of policy, it is expected that Blue will not expose its network ports 

promiscuously, nor will third party providers. If a signal from Green were observed on an 

unexpected Blue equipment port, for example because of mis-wiring, Blue would raise an 

exception, rather than accepting it, for security reasons if nothing else. Only in restricted 

environments such as data centers, might it be possible to regard ports as undifferentiated 

open-access pools. 

The starting point is completion of the Blue configuration described in clause 5.1. 

1. The Green OSS instantiates an SDN controller SDNCG on some suitable platform under its 

control. Maintaining architectural uniformity with clause 5.1, SDNCG includes a coordinator, 

a DPCF and at least the skeleton of a master RDB. Green may add virtualizers and 

application agents later, as described above in clause 5.1 step 6. 

The Green OSS may pre-populate its master RDB with an information model instance that 

represents part or all of the resources of the Blue network that have been assigned to it, along 

with auxiliary information such as permissions to take various actions on various resources 

(note). Examples of such actions include creating CFM MEPs or setting performance 

monitoring collection points with alert notification thresholds. These resources and policy 
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may guide SDNCG’s execution, and may be used to audit the resources and capabilities that 

will become visible to Green at step 5. 

Note – The Green master RDB could also contain information about directly controlled 

Green NEs, VNs contracted from other providers, or anything else of concern to itself. 

The Green OSS provisions reachability and security policy into SDNCG, which enables 

communication between the Green SDN controller and the various Blue NE agents. 

2. Asynchronously, the Blue OSS instantiates an agent for client Green, designated agent G, on 

each pertinent NE. 

3. In accordance with the business and technical agreement, the Blue OSS allocates resources 

and establishes policy for Green. The coordinator logically transfers resources to the agent G 

RDB. In figure 5.2, policy is illustrated as a heavy Blue bar that protects Blue from possibly 

unauthorized action attempts by Green (note). Policy enforcement resides in the virtualizer 

functional component. 

Note – The figures also show policy associated with Blue’s own agents. Special aspects 

of provider policy are discussed below. 

4. The Blue OSS provisions SDNCG’s identity, reachability and security information into each 

NE. This permits communications between SDNCG and the agent G in each Blue NE. When 

Blue supports additional clients beyond Green, each client’s agent-controller relationship has 

its own communications policy and credentials. 

5. The Green SDN controller SDNCG and the Green agent in each NE establish mutual 

communications. SDNCG may upload or audit the RDB residing in each of the agents G. 

Having populated or reconciled its master RDB, SDNCG is then free to use the resources in 

any way it wishes. 

The Green-Blue client-server relationship is many-to-many. Blue may support agents dedicated 

to additional clients according to the same process. The Green SDN controller may orchestrate 

any number of VNs from different providers, along with its own directly controlled NEs. 

Green may now support its own application clients by instantiating a virtualizer and agent for 

each of them, and allocating resources from its own master RDB to the client agents. 

Blue retains knowledge and ultimate power over all resources, whether assigned to another agent 

or not. It is not mandatory that a specialized Blue agent exist (note), or that it be designated 0. If 

such an agent exists, however, its policy may grant it extended or specialized scope and privilege. 

Provider agent policy may, for example, deny Blue operations on resources that have been 

assigned to Green, but accept a force option that overrides the deny. 

Note – A case in which the Blue OSS would not instantiate a specialized Blue agent 

would occur if Blue’s NE were not under SDN control, i.e., a hybrid NE. 

Blue is responsible for dealing with issues that inalienably belong to the provider. Some of this 

responsibility may be directed from the Blue OSS through the NE coordinators; other operations 

may be directed by the Blue OSS, acting as an application client to SDNCB, thence to the various 

agents 0, and executed within the bounds of associated privileged policies. Still other operations 
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may be driven by logic within the Blue SDN controller itself, for example reoptimizing resource 

allocations. 

Blue provider functions include, for example: 

 Administering resources that are implicitly or explicitly offered by Blue to Green as 

services. A primary example is a tunnel, which is a server layer network connection 

whose endpoints are visible to the client layer network. As well as the necessary 

connectivity, Blue would operate its own tunnel OAM, protection or recovery, 

performance monitoring, metering or policing, etc., as part of its service assurance 

process. Such server-layer details would be invisible to Green. 

 Defect monitoring, alarm timing and declaration, propagation of failure information from 

the D-CPI through the virtualizers to the affected client agents. 

 Infrastructure security monitoring, reporting of security alarms to the Blue OSS when 

exceptions occur. Security audit, security logging. 

 Taking underlying Blue resources out of service (administrative lock) for maintenance 

purposes, and notifying the affected agents (operability state disabled). 

 Allocating or reclaiming resources in the event of changes in the business relationship 

with the client, either transient (the client requests and releases scheduled or first-come-

first-served resources within the scope of an umbrella business agreement) or permanent 

(client contracts for increased resources, no longer needs a given resource, or the client 

business relationship terminates). Resource reallocation may also result from network 

build-out or global network reoptimization. 

 Administering resources that are contractually shared by several clients on a best-efforts 

basis, possibly with weights and priorities. 

 OSS communications capabilities, as noted previously. 

 Informing SDNCB of possible agent G failure. 

At least some of these Blue functions affect the resources and state visible to Green. It is 

therefore necessary that the Blue agent 0 and coordinator be tightly integrated with agent G. The 

Blue agent 0 or coordinator may receive resource requests and exceptions from agent G, and 

exchange notifications or other information from the Blue resource space. In the example from 

above, resource lock by a Blue administrator must trigger at least a notification to SDNCG, if not 

NE-local protection switching of Green resources. 

Blue’s integration with the agents G may be local to the NEs, or may occur in SDNCB. 

Policy is enforced in the virtualizer functional component. Characteristics of a policy include: 

 It is common to allow a client to use any address space of its choice, at whatever layer it 

chooses, and to isolate clients by way of encapsulation (clause 4.5). The encapsulation 

technique is determined by provider policy; particular parameter values are stored in the 

agent RDB. 

Encapsulation is invisible to the client, both on the client’s virtual data plane and on the 

controller plane. Commands and responses between the agent and the controller use the 

client’s address space, but the agent must interpret them in light of the encapsulation 

scheme (note). 
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Note – If OpenFlow-switch is the control protocol, packet-in/packet-out functions 

as well as forwarding table entries must have their encapsulation stripped (or 

interpreted) in the northbound direction, and added in the southbound direction. 

 Clients will wish to identify their resources according to their own conventions. 

Translation of identifiers between client and provider is done by the virtualizer. At least 

some of the client naming conventions can be captured and installed by the Blue OSS (in 

this case) in the RDB itself, as part of the business and technical negotiation on data 

plane interface points. 

 The policy enforcement point must interpret events and actions in the context of the client, 

beyond just the translation of names. A hardware facility fault or administrative lock, for 

example, may translate into port down messages to several different client controllers, 

and may trigger any of a variety of protection or recovery actions in different clients. 

Assigning a resource to the client’s agent is reported to the client as an object creation 

notification, while removing a resource is reported as an object deletion notification. 

Both SDNCB and SDNCG may subscribe to notifications, invoke alarm reporting control, 

establish PM collection points with thresholds, etc., but Green only within the bounds of the 

resources it controls. As a special capability to facilitate SLA monitoring and troubleshooting 

between customer and provider contexts, SDNCB needs the ability to see the view (including 

notifications) presented to Green. 

5.3 SDN provider with virtualized network, non-recursive 

In clause 5.2, a client agent resides on each of the pertinent NEs. This constrains each virtualized 

resource to be wholly local to some individual NE. Conceptual resources that span multiple 

physical NEs must be expanded in the client SDN controller. The key difference in this clause 

5.3 is that the client can contract for virtual resources that span multiple NEs, which are 

expanded on the server controller. Locating the provider’s entire representation of the client’s 

environment on the server SDN controller provides an integrated VN view to the client and also 

protects the server’s NEs from direct exposure to the client’s trust domain. 
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Figure 5.3 – Virtual network, single level control hierarchy 

A VN contains at least one virtual NE (VNE). A VNE is an abstraction of a subnetwork, which is 

treated by a controller as if it were a physical NE. At one extreme (clause 5.2), there is a one-to-

one mapping between each VNE and an underlying physical NE; at the other extreme, the entire 

VN is represented as a single NE (Green-1 in figure 4.15). Links internal to the VNE-subnetwork 

are concealed, while external ports are exposed. Unrestricted connectivity among like ports of a 

VNE (or unlike ports via adaptation) is not necessarily guaranteed. The ports on a VNE may 

ultimately be traceable to separate physical NEs. The cartoons shown at the I-CPI instances in 

figure 5.3 represent possible middle ground. 

Green’s SDN controller expects the virtual network to look like a real network, just as in clause 

5.2. Green expects to conduct the usual operations, including, in particular, issuing simple 

forwarding rule entries against NE ports. Each such rule may, in fact, span an entire subnetwork. 

Blue implements these commands either by creating a series of forwarding entries in the 
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resources dedicated to Green (figure 4.13 implied here), or by mapping the command into pre-

existing or dynamically created tunnels, or a combination of both. 

Because a Green VNE may span multiple physical Blue NEs, it can happen that no physical NE 

is in a position to expand the resource abstractions desired by Green. The lowest level SDN 

controller whose view spans the given abstraction should be the one responsible for expanding 

the abstraction. Thus, the agent G environment necessarily migrates from the Blue NEs to the 

Blue SDN controller SDNCB, where it appears as an RDB representing the entire Green VN, 

supported by a network virtualizer. These, in turn, deliver the necessary commands to an 

expanded number of Blue NEs. As well as expanding the scope of southbound commands from 

the Green SDN controller, the Blue virtualizer is responsible for consolidating information from 

the underlying network into a form that makes sense in terms of Green’s virtual network. Figure 

5.3 shows this situation. 

Figure 5.3 also shows a second client, Red, with its own completely independent VN resource 

database, policy and virtualizer. For generality, the Green SDN controller is also shown as an 

orchestrator of its own NEs, as well as those visible from Blue. 

Blue provisions client-specific information only on SDNCB, not on Blue NEs. All actions on the 

Blue NEs are performed by the SDNCB DPCF onto the NE agents 0, over a trusted D-CPI that 

carries client information and actions only by way of the SDNCB virtualizers and policy 

enforcers. To the NEs, this is the same situation as described in clause 5.1. 

The Blue OSS performs the following tasks for Green, and again for each additional client: 

1. Instantiation of a client-specific agent on SDNCB, for example agent G. This includes the 

creation of at least a skeleton master RDB. 

2. Allocation of Blue resources from the master RDB in SDNCB to the agent G RDB by 

way of the coordinator functional component. 

As part of resource assignment, it may be necessary for Blue to establish tunnels and 

other hidden network services via SDNCB agent 0, along with the appropriate overhead 

(OAM, protection, PM). These represent simple link endpoint resources to Green, but to 

Blue, they are full connectivity services. 

3. Instantiation of a virtualizer associated with the agent, and installation of policy. The 

virtualizer interprets client RDB operations to and from the underlying DPCF function. 

The virtualizer exposes Green’s agent RDB to Green’s SDN controller, possibly 

abstracted to less detail than the set of resources reserved in step 2, as suggested by the 

cartoon at the I-CPI. The difference in abstraction is a restricted view of the complete 

RDB contained within agent G. 

The virtualizer is also the policy enforcement point (PEP). The policy ensures that Green 

receives the contracted services, while protecting Blue’s resources from misuse, 

intentional or otherwise. Policy also specifies what subset of the possible actions is 

available to Green, what information Green is permitted to query, and what notifications 

are available for Green’s subscription. Policy defines the translation of identifiers 

between Green’s designations and Blue’s. In addition, the policy specifies how client 

traffic is encapsulated or translated, if it is necessary to isolate client address spaces from 

each other. As before, policy is shown as a heavy bar where Blue’s virtualizer borders 
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Green’s agent environment. The color indicates that the server (Blue) always owns and 

enforces the policy. 

4. Establishment of IP connectivity, security credentials, etc., to permit SDNCG to 

communicate with its agent on SDNCB, and thereby with its RDB. 

The Green OSS performs a complementary set of operations on SDNCG. This is the same 

as described in clause 5.2, except that only one security association is essential (note). 

Note – If the Green SDN controller functions in terms of individual sessions 

controlling individual NEs, it would be natural for it to establish a fully secured 

session to each of the Green VNEs (as in clause 5.2), not knowing or caring about 

their possible existence in a common agent RDB. Multiplexing these sessions into 

a single container session and a single security association would be desirable. 

5. SDNCB may offer the added-value feature of responding to dynamic queries from 

SDNCG to claim or release additional resources. Such queries would have to flow 

through agent G, because there is no other connection between the Green environment 

and Blue. 

Access to additional resources would still be bounded by policy, but the policy would not 

necessarily have to be local to SDNCB. It might be a meta-policy retained in the OSS, or 

possibly even negotiated by the respective operations support systems (OSS) on demand. 

In such a case, SDNCB might query the Blue OSS for a decision when it received such 

requests. When Blue grants or reclaims resources, it updates the SDNCB master RDB and 

the agent G RDB accordingly. 

Possibly through custom-downloaded feature packages, SDNCB may be able to respond 

to Green queries in the form of a what-if question, for example a request for Blue to 

propose resource options with a monetary or other figure of merit target, possibly 

constrained by maximum acceptable attribute bounds, from which Green intends to 

choose. 

Figure 5.3 shows an agent 0 in the Blue SDN controller, which represents Blue’s interest and 

ability to control Blue resources directly, either for Blue’s own purposes or on behalf of the 

agents that serve Blue’s clients (e.g., for tunnel establishment per step 2 above). The virtualizer 

and policy associated with this agent would be expected to have far greater scope and privilege 

than those associated with clients. 

In addition, Blue may support applications directly from its SDN controller via one or more app 

server agents, each app defined in terms of an RDB and a policy. 

The configuration of clause 5.2 is recommended for deployment only under special conditions. 

To summarize the advantages of this clause 5.3 configuration, as compared to that of clause 5.2: 

 The Blue OSS need not reconfigure its NEs as clients come and go. All activity on Blue’s 

NEs is conducted by way of the Blue NEs’ agents 0, while SDNCB orchestrates all 

services delivered by Blue to its clients. Client-specific provisioning occurs only on 

SDNCB. 

 The granularity of Blue network virtualization is now completely arbitrary. 
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 NEs are no longer directly exposed to client SDN controllers, and no longer need agents 

or policies for clients. (Data plane interconnectivity is of course necessary, but carries far 

less security risk.) 

o In security terms, the network attack perimeter is reduced. 

o Overall complexity is essentially unchanged, but complexity has migrated into the 

SDN controller. NE software has become simpler. 

o Contention for finite physical resources, for example ports, queues or forwarding 

tables, are directly visible to the common controller SDNCB for arbitration and 

network-wide optimization. 

 Non-SDN NEs may be able to support SDN principles with few, if any changes, because 

most of the SDN-specific features now reside in the controller. 

o It may be possible to adapt existing EMS or OSSs to mediate between SDN 

controllers and NEs, although possibly with penalties on performance or 

flexibility. This may be important in migrating legacy networks into SDN 

domains. 

This clause 5.3 is the most important part of the controller discussion, because it localizes 

virtualization in the SDN controller. Clause 5.4 continues the exposition by describing recursive 

controller virtualization. 

5.4 SDN provider with recursive virtualized network 

Clause 4.1 explains the need for a recursive controller interface. The requirement for recursion 

implies that each level in the recursive hierarchy be sandwiched between like views, recognizing 

that special considerations may be appropriate at the lowest (physical) D-CPI and potentially at 

the final A-CPI handoff to a user who is not acting as a middleman. Support for recursion 

follows naturally from the paradigm that a client manipulates a common information model 

instance in a server at every CPI. 

Recursive virtualization implies that any SDN controller’s local view appears to be a D-CPI on 

its south side, or an A-CPI to its north, but may be an I-CPI from a wider perspective. Figure 5.4 

shows how interfaces appear from a global, multi-level perspective. It should be recognized that 

a given VN may include both physical and virtual resources, for example if a provider offers 

some services from its own physical network, but subcontracts tunnels from a carrier’s carrier. 

As such, interface designations such as D-CPI may be intrinsically ambiguous, partly physical, 

partly virtual. 
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Figure 5.4 – Multi-level hierarchical architecture 

Figure 5.4 illustrates a recursive client-server model. Blue owns a set of resources, shown as the 

lowest level of the figure, but not necessarily based 100% on a physical network. Blue delivers 

virtual network services to one or more clients, Green and Pink, for example. But in contrast to 

clause 5.3, Red is now a customer of middleman Green, rather than a direct customer of provider 

Blue. 

Green’s OSS and SDN controller behave the same with regard to the Blue server as noted in 

previous clauses; likewise Red’s SDN controller and the Green server. The client (e.g., SDNCR) 

has no visibility of possible further recursive levels below the server (e.g., SDNCG), and the 

server (e.g., SDNCB) has no knowledge of the applications offered by its client (e.g., SDNCG). 
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5.5 Summary 

By way of its OSS, a provider allocates resources and establishes an environment for each of its 

clients or applications. 

Generically, an SDN controller acts as a server to expose a set of managed object instances to its 

applications, and satisfies the needs of these applications by acting as a client to some set of 

managed object instances in the data plane infrastructure, such as to satisfy the demands of its 

applications. Both application and data plane may be virtualized, leading to a recursive server-

client hierarchy (see figure 4.1). 

In a dedicated resource model, the server allocates a pre-negotiated set of resources (managed 

object instances) to its client. The set of available resources does not change except as the result 

of business relationship changes. 

The dedicated resource model may be extended to allow for shared resources. In the shared-

resource extension, the client may be allowed by provider policy to create additional managed 

object instances that represent resources, or to set attribute values that expand the capacity or 

capability of existing resources. The client may also be able to surrender resources whose cost is 

no longer justified. 

The client SDN controller has full control of the resources allocated by the server. 

Both client and server are responsible for ensuring transactional integrity, as required, across 

their respective domains of control. 

The server and each of its clients exists in separate trust domains. A common trust domain is a 

special case. 

The server enforces policy that guarantees the contracted level of service to the client, while 

simultaneously protecting itself and other clients from rogue behavior by the client. 

The server is responsible for isolating clients’ traffic. By agreement, the server may provide 

underlying network services to the client, such as tunnels or protection. These functions are 

invisible to the client. 

Client code should not run within the server’s trust domain. However, it might be allowed for the 

client to download applications software onto a computing platform that also supported part or 

all of the server’s SDN controller. Because the information and state synchronization required of 

an SDN controller could not then be satisfied, such client code would be considered external to 

the SDN controller. Such code would then interface to the SDN controller via the controller’s A-

CPI reference point. The trust domain boundary at the A-CPI recognizes the undesirability of 

executing client code in the server’s trust domain. 

Although figure 5.4 and the previous figures show functional components inside the SDN 

controller, these are for explanatory purposes only, and are not architectural mandates. The SDN 

controller is a black box. Nothing normative can be said about its internal structure or interfaces, 

but the logical centralization principle requires that the functions share an information model 

instance and synchronize each other with regard to state. The SDN controller may contain other 

functional components, or may cooperate with external functional components such as a PCE. 
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6 Implementation considerations 

While this clause cannot guide currently-existing implementations, it suggests criteria for the 

evaluation of current implementations, and factors to be considered in their evolution. Given its 

orientation to the future, it also identifies work in progress, or work that has yet to be undertaken. 

6.1 Security 

SDN security requirements may differ from those of a classical network due to their inherent 

characteristics and implementation choices. Depending on its physical implementation, 

centralized control may expose a single high-value asset to attackers, as distinct from a larger 

number of autonomous assets in a distributed control domain. Because logically centralized 

controllers are nevertheless likely to be implemented in distributed fashion, they may have 

additional implementation-related vulnerabilities that are not visible to the SDN architecture. 

That is, the architecture models the SDN controller as a single entity, implying a single secured 

session between controller and data- or application-plane entities, whereas the actual 

implementation may require multiple communications sessions because of physical distribution, 

each of which requires strong security. Operators are expected to mitigate some of the threats to 

a logically centralized controller by deploying SDN controllers within their secure computing 

environments. 

A new class of threat arises because a software-defined network explicitly offers programmatic 

access to client controller plane or applications entities. These clients are typically separate 

organizational or business entities. This new business model presents requirements that do not 

exist within closed administrative domains, in terms of protecting system integrity and third-

party data, in particular to ensure that business management and real-time control information of 

one entity is fully isolated from that of all others. Useful experience may be gained from existing 

automated interfaces between customer and provider business support systems. 

On the other hand, the programmability feature also provides opportunities to enhance the 

security posture of networks. For example, it may be possible to use SDN techniques to construct 

a data plane security solution that is able to coordinate both network and security devices to 

detect and react to attacks in a more flexible way. However, the implementation of new data 

plane security functionality should not be achieved at the expense of overall system integrity and 

security. 

Isolation of traffic between tenants is an existing security topic. In an SDN context, there are 

expected to be more components that could affect isolation, interacting more dynamically than in 

non-SDN networks. Both standards and operational practices need to ensure that isolation is not 

compromised. 

Given the interconnection of different companies and organizations encouraged by SDN, the 

architecture is strongly driven by notions of trust domains with well-defined boundaries. A 

uniform interface model assists in thinking holistically about security issues, while strong 

boundaries help protect the rest of the network from trust domains with inadequate or 

compromised security. However, such trust domains cannot block threats posed by attackers who 

gain access to the SDN trusted domain (within the operator’s trust boundary), or who exploit 

weaknesses at applications or inter-domain interfaces exposed external to the trust boundary. The 
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architecture therefore requires strong authentication and robust security at all interfaces. Not 

unique to SDN is the fact that insiders represent a significant security threat, and that operator 

error threatens system integrity. To address this, the architecture should include strong identity 

and credential management functions that secure all entities and their associated state. 

These and other factors point out the importance of audits to assure that the processes are 

working as expected. It may be required to allow real-time monitoring by a trusted third party. 

Real-time audits may be useful, and audit logs may be needed for forensic analysis and legal 

recourse. As such, it is important that the audit process and the logs themselves be protected 

from tampering and corruption. Implementations should restrict operator and process access to 

minimum authorized privilege levels, and partition the effect of impairments that may be caused 

by trusted actors. 

Based on their own criteria, operators may choose to reduce the security restrictions on certain 

interfaces, for example at physically secure management ports on NEs and servers. It is 

important to understand the security implications associated with such implementation choices. 

In general, security is improved where security and administrative functions are manageable at 

scale, with minimal human intervention throughout their entire life cycles. 

Experience has demonstrated the difficulty of retrofitting security capabilities into existing 

technologies (DNS and BGP are notable examples). However, SDN interfaces and protocols are 

being developed in the recognized context of escalating exploitation of technical and process 

deficiencies, with increasingly severe consequences. Therefore, it is critical that weaknesses 

previously addressed by non-SDN architectures not be repeated when building the SDN 

framework by securing the network architecture with a holistic approach to designing protocols 

and interfaces. 

6.2 Flexibility 

Decoupling of control and data planes encourages evolution of network infrastructure toward 

arrays of similar boxes, each with predictable, if not identical, feature capability, with all 

specialized features provided either outside the SDN domain, or better yet, by way of virtualized 

network functions. It remains to be seen how much of this can be achieved, even by individual 

operators, much less by the overall community, and how soon the necessary investment can be 

put in place. For the foreseeable future, heterogeneity is a fact of life in the network, which must 

be addressed by SDN. 

A wide variety of network elements may thus be brought into the scope of SDN. It is 

theoretically possible to spontaneously install an arbitrary NE under the scope of an arbitrary 

SDN controller, at risk of incompatible capabilities, methods or protocols. In reality, however 

network planning will ensure a priori that, in addition to common protocols, the given NE and 

the given SDN controller jointly share the necessary feature richness and control capability. 

Different NE capabilities also pose a challenge to network virtualization, but it is a service 

planning issue, not a run-time issue. At run time, exceptions between controller and 

infrastructure may occur due to faults or resource performance or capacity limitations, but 

unsupported-capability exceptions should never occur. 

It is necessary that underlying NEs expose their capabilities to the SDN controller, at least for 

audit and verification purposes. When the client view is of an abstracted NE or a non-degenerate 
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subnetwork, it may have unique capability and connectivity constraints that need to be reflected 

upward by the server controller. For example, even on a physical NE, some ports may be able to 

adapt traffic between two given types of characteristic information, while others may not. 

Another example is that some internal subnetwork connectivity may be protected, or possible to 

protect, while other connectivity may not. 

Similar factors pertain to the A-CPI, complicated by the wide range of possible customers and 

applications and the expectation for rapid service fulfillment. It may be appropriate for providers 

to publish catalogs that define their commitments to support particular object models (possibly in 

the form of APIs). Where a catalogued entry suffices, the customer can gain service almost 

immediately, especially if the provider’s SDN controller supports on-demand installation of 

feature packages and makes them available to a client’s agent. Custom features and interfaces 

could still require development effort on behalf of both provider and customer. Over the course 

of time, the catalog would be expected to grow, until most customers could be satisfied with 

catalog offerings. 

The point of this clause is to caution against the idea that arbitrary infrastructure, controllers and 

applications can be combined without careful planning and validation. 

6.3 Distributed controller considerations 

This document does not discuss the details of distributed controllers or distributed state, which 

involves describing the well-known challenges of implementing distributed systems. Essential 

aspects involve satisfying key distribution transparencies that hide various aspects of the 

underlying distribution from the user. Commonly cited transparencies (not an exhaustive list) 

include those of access, location, concurrency, replication, failure, and migration. 

 Access transparency: having no apparent difference between local and remote access 

methods (syntactic and semantic consistency) 

 Location transparency: ability to access any system component without needing to be 

aware of its location (details of topology of no concern to the user) 

 Concurrency transparency: capability, for example, for various applications to access 

shared data/objects without creating interference among them 

 Replication transparency: ability of a group of components to provide a single interface 

to others (e.g., if a system provides replication for availability or performance reasons, it 

should not concern the user) 

 Failure transparency: ability for the failure of a component to be hidden from others, 

which can be achieved by using replication transparency (a group of system components 

providing a single interface to others can be made aware of the failure of one member and 

coordinate among themselves to assure others are not aware of it) 

 Migration transparency: support for hiding of system component migration or 

reconfiguration, e.g., to provide better performance, reliability, etc. (should be of no 

concern to the user) 
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Considerable research has been, and is being, devoted to achieving various distribution 

transparencies, which is beyond the scope of this document. 

6.4 Controller deployment 

An SDN controller may use an SDN data plane for some or all of its internal or external 

interfaces, as long as the SDN controller does not rely for its connectivity on the operability of 

the data plane that it controls; otherwise, the SDN controller may find itself stranded or 

irrecoverably fragmented. 

This must be considered when planning the deployment of SDN controllers relative to their 

controlled subnetworks, particularly if the SDN controllers are distributed, with some or all 

components located in clouds and subject to migration. 

Many SDN scenarios optimize network resources, but assume connection-oriented services, in 

which an application establishes a route, a capacity and a QoS before beginning the data transfer. 

Real-time responsiveness of the controller to connection setup requests is generally not a factor 

in these cases. Other SDN use cases imagine real-time analysis of traffic flows and network load 

that may be at least partially chaotic (i.e., fractal, self-similar at any scale), with optimization in a 

closed feedback loop. It needs to be kept in mind that, in addition to measurement time and 

actuation time, the minimum time constant of such a feedback loop is affected by 

communications latency between network infrastructure and SDN controller. Additional delay 

would be incurred if the SDN controller were distributed and if feedback control required 

communication within the distributed components of the controller. 

6.5 Interworking with non-SDN environments 

Clause 5.1 describes how an SDN-controlled infrastructure can serve non-SDN application, 

while this clause extends the discussion in clause 5.3 about overlaying SDN applications on a 

non-SDN infrastructure. By bringing pre-existing networks under the umbrella of SDN 

principles, a provider can offer an SDN environment to its customers. That is, a customer may 

see SDN at an A-CPI, while the provider implements SDN on a partially or completely non-SDN 

network. The provider may do this by way of adaptation middleware, existing management or 

control systems, subcontracts to lower-level providers, or any combination thereof. 

There already exist management protocols that communicate with data plane resources, for 

example NETCONF [8], SNMP, Corba, TL1, even command line interfaces. These protocols are 

suitable for setting up and monitoring quasi-static resources on non-SDN network elements, the 

information from which can then be made available to SDN controllers or exposed to customer 

applications. These protocols and information flows exist in currently deployed network 

elements, and in providers’ OSS infrastructure. With no clear business case to replace them, they 

will be left in place indefinitely. It is therefore essential to exploit SDN principles in a mixed 

environment as much as may be possible, while recognizing that a full SDN environment is a 

long-term goal. The important principles to apply are unified control and global view. 

Unified control means that a NE need never concern itself with conflicting demands on its 

resources. There are at least two ways in which this can be implemented. 
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1. An SDN controller could connect to the NE by way of a mediator function, for example 

an existing EMS, to translate its instructions into terms understood by the NE. No 

changes would need to be made to the NE; the mediator platform would need to be 

upgraded to perform the agent and virtualizer functions described in clause 5. 

2. The NE could be upgraded to support the architecture described in clause 5, but some 

resources could be kept out of bounds. These resources would be controlled through non-

SDN protocols, while SDN controllers were granted control of strictly separate resources. 

In both cases, the conceptually monolithic SDN controller would remain responsible for 

maintaining a common, self-consistent view of information and state of the resources under its 

control. 

The global view principle means that the SDN controller has full knowledge of its domain, 

where the meaning of full knowledge may vary depending on the need. For purposes of this 

clause, the question is how the SDN controller acquires this knowledge and keeps it up to date. 

Queries, polls or notifications from the network itself are of course an important source of 

information. Management systems may instantiate or update information in an SDN controller, 

for example about inventory. It was previously noted that an SDN controller may run routing or 

signaling protocols to communicate outside its own technology or administrative domain. 

Interconnected SDN and non-SDN domains are likely to exist for some time to come. It will be 

appropriate for SDN controllers, or their associated back-office network and service planning 

systems, to understand how to construct services that continue to use existing NE capacity while 

exploiting the flexibility of SDN where it can add value. As described in clause 6.2, this implies 

intelligence in network and service planning to allocate functionality to the various nodes in a 

virtual network. 

6.6 Management 

SDN-specific management functions are described extensively above. In addition, network 

elements will continue to require all of the existing management functions, such as equipment 

installation and inventory and software upgrade. The protocols mentioned in clause 6.5 will 

continue to be used indefinitely in non-SDN NEs. Some of them, for example NETCONF, are 

candidates for use in SDN environments, as well. 

The following topics also imply the continued presence of the OSS, but the precise division of 

effort between OSS and SDN controller is for further study, and may differ according to 

operator-specific criteria. It is expected that, over time, many current management functions will 

become the responsibility of SDN controllers and applications. Indeed, existing managers may 

find themselves in the role of application clients to SDN controllers. 

Without intending to be a complete list, management functions include: 

 Infrastructure maintenance: fault analysis, diagnostics, alarm correlation and management. 

Subscribing to PM threshold crossing alerts, monitoring PM counts. SLA monitoring 

with adjustments to billing records for SLA violations. 

 Logging, especially security logs. Log storage, upload and retention. 

 Configuration and service persistence, backup, restoration, auditing (clause 6.9). 

 Traffic analysis, network and equipment planning, installation, inventory. 
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 Software distribution and upgrade. The centralized, global view available to the SDN 

controller may make it easier to temporarily route traffic around NEs that are scheduled 

for software upgrade or extensive equipment changes, thus reducing or possibly avoiding 

service disruptions that can occur in the existing network. 

6.7 Inter-domain control communication 

Taken to its extreme, the principle of logically centralized control suggests that a single SDN 

controller have worldwide scope. However, a real-world SDN controller probably doesn’t 

encompass all endpoints of interest to its clients. Client services often extend into other technical 

or administrative domains. These domains may include non-SDN networks. 

Particularly when interfacing with non-SDN-controlled networks that are already in place and 

working, it may be appropriate that an SDN controller run a variety of existing protocols, for 

example BGP or GMPLS. When talking directly to another SDN controller, the appropriate 

interface is a matter for further study, but may well be extensions of these, or other, existing 

protocols, for example the path computation element communication protocol, PCEP [9]. 

Following the principle of parsimony, new protocols should be developed only upon convincing 

evidence that no existing protocol can be suitably used or adapted. 

6.8 Application-controller plane interface capabilities 

The SDN service view may be very different from the underlying resource view. The 

descriptions in clause 5 use the wholesaler-middleman model to argue that the view, and the 

interface, at each level of hierarchy may be the same. From another perspective, the view and the 

interface may be quite different. This occurs when the SDN controller offers its clients 

something different from just a further abstraction of the same resources. The information 

needed for this may be configured, may be available from other sources, or may be an emergent 

property of the underlying resources. 

 The A-CPI should support the ability to provide transactional integrity for applications 

that require it. 

In general, applications are operated in their own trust domains, separate from the SDN 

controller trust domain. The A-CPI is strongly recommended to use the same agent-policy 

interface defined for other CPIs. 

 The A-CPI must support strong security features when it crosses trust domain boundaries. 

SDN is intended to offer its clients a wide variety of feature capabilities. Even ignoring the 

straight pass-through model, this variety makes it difficult to specify a single, universal A-CPI. 

Applications may support interfaces to other applications or SDN controllers in the role of clients, 

servers, or peers, and possibly in different roles at various times. 

Networks have a limited set of functionality, which applications will wish to exploit in one way 

or another. Some of these requirements may be derived from clause 5. Not every application will 

require all of these features, and not every SDN controller implementation necessarily need 

support all of them. Downloadable feature packages assist with the desire to keep SDN 

applications open-ended. 
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The A-CPI specification should allow the following capabilities. Depending on its specific 

purpose, an instance of an A-CPI may not necessarily support all capabilities. 

 To expose a full resource view, including virtual network topology. 

 To directly expose the low-level information model. 

 To expose abstracted views of its resources. This should be done with a specialization of 

the same information model that exposes full detail. 

Many of the following functions illustrate client capabilities that, if offered by an SDN controller 

to its applications, would require support. 

 To allow an application to set and query any attribute or state within the scope of its 

control. 

 To allow an application to control traffic forwarding: to select traffic according to a set of 

criteria, to modify or adapt the traffic if necessary, to forward it to a given set of egress 

points. Selection criteria may be as simple as an ingress port or as complex as a vector 

that includes match fields up to and including layer 7, potentially spanning multiple 

packets of a flow. 

 To allow an application to propose a traffic forwarding construct that requires the use of 

new or existing resources according to specified figures of merit, and to receive one or 

more offers from the controller. The client may propose and accept in a single request, or 

may review the offers and accept zero or one of them. 

 To allow an application to invoke and control standardized functions such as STP, MAC 

learning, ICMP, BFD/802.1ag, 802.1X, etc. 

 To allow an application to subscribe to notifications of faults, attribute value changes, 

state changes and threshold crossing alerts (TCAs). 

 To allow an application to configure performance monitoring (PM) collection points, 

with thresholds, and to retrieve current and recent results. 

 To allow an application to invoke and control traffic-processing functions through 

exchanges of opaque data blocks. 

Separate work in ONF is assessing use cases for the A-CPI, which may extend or refine these 

criteria. 

6.9 Network initialization 

The behavior of an NE (agent) that loses contact with its SDN controller is subject to policy. 

Packet-oriented NEs may continue as before, with or without forwarding entry time-out, or may 

stop forwarding packets immediately. Typically, circuit-switching NEs would be expected to 

continue carrying traffic as before. OAM functions such as protection switching and alarm 

declaration would usually continue to operate. Operators may have specific requirements for 

such behavior, and implementers may allow for management provisioning of such aspects. 

Related to these requirements are the questions of persistence, how much data should be stored 

on the NE, how it is to be backed up and restored, and how much functionality the NE should 

assume when it reinitializes locally, before having a controller connection. Whether this should 

be specified by the architecture is for further study. 
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If an SDN-controlled NE continues to function, or re-boots with a certain amount of 

functionality restored from local persistent memory, it will be necessary that the controller audit 

and reconcile the NE against some configuration and service database. Storage, backup and 

restoration of such a database is not presently specified. 

These requirements imply considerable complexity. It may be acceptable for some kinds of 

SDN-controlled NE to maintain essentially no persistent data, and to initialize in a null state. 

This option would imply a longer time before service was available. The consequent 

deterioration of service availability or quality may need to be addressed. 

In a hierarchical control arrangement, it is possible that a failure or reinitialization could affect 

only one, or a few, of the necessary levels between application and hardware. Recovery via 

protection or re-routing may be possible in some cases. In any case, it should be pre-negotiated 

how each level will behave in the event of the loss and recovery of its neighboring level. Factors 

for consideration include: 

 The level of persistence of the state and behavior of one level during the absence of its 

neighbor. 

 Assurance that local or network-wide initialization or restoration does not strand 

resources. 

 Whether the neighbor can or should retain some useful state when it reinitializes. 

 How the neighbors reconcile state when they re-connect. 

The effect of NE or subnetwork reinitialization on external applications is not specified by the 

architecture, but may depend on service availability commitments. In any event, it is expected 

that hands-off recovery of affected applications be supported. 

6.10 Integration with other initiatives 

Several SDN-related activities are under way throughout the community. As a continuing effort, 

it is desirable that this architecture understand and integrate the value added by each of these 

activities. Contributions are solicited on all of the following topics, as well as additional list 

items. 

Note – The inclusion of a reference is not to be understood as an endorsement by ONF. 

Standards development organizations and industry forums 

IETF 

ALTO [15] 

CCAMP [16] 

FORCES [17] 

I2RS [18] 

NETCONF [19] 

Netmod [23] 
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NVO3 [20] 

PCE [21] 

SFC [22] 

IRTF SDNRG [38] 

OIF – Optical Internetworking Forum [24] 

MEF – Metro Ethernet Forum [25] 

ITU-T [26] 

ETSI ISG NFV – Network functions virtualisation [27] 

Broadband Forum [39] 

TM Forum [35] 

Open-source work 

Floodlight [29] 

OpenStack [13] 

OpenDaylight [30] 

Open Vswitch [31] 

OVDSB [32] 

Ryu [33] 

Trema [34] 

FlowVisor [28] 

6.11 Protection and restoration 

Data plane protection and restoration models are well established for networks at all standardized 

layers. The introduction of SDN does not visibly imply changes to these standards. Rapid 

protection switching implies that the associated protocols and state machines continue to reside 

on network elements themselves, with the SDN controller responsible for pre-computing 

recovery resources, provisioning recovery behavior and subscribing to notifications. 

At higher layers, the SDN controller may be responsible for restoring traffic itself, possibly by 

re-computing paths and re-routing traffic, possibly by re-optimizing resource allocation on a 

global basis, and possibly by triggering the migration of VMs to different physical locations in 

the cloud. 

When underlying resources are shared by more than one client, the employment of redundancy 

must be planned to satisfy the needs of all such clients. This may be done in any combination of 

several ways: 
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1. Group clients into resource pools according to common availability and recovery time 

requirements. 

2. Protect the underlying resources according to the most stringent requirement of any of the 

clients, and let the others ride free. 

3. Offer a default level of shared resource protection, and require clients with more stringent 

needs to subscribe to dedicated resources. 

4. Other. 
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