
1

OpenFlow Configuration and
Management Protocol

OF-CONFIG 1.0

cassandrablair
Typewritten Text
ONF TS-004

OF-CONFIG 1.0 | OpenFlow Configuration and Management Protocol Version 1.0

© Open Networking Foundation

ONF Document Type: OpenFlow Config
ONF Document Name: of-config1dot0-final

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, ONF disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation
of this specification, and ONF disclaims all liability for cost of procurement of substitute goods
or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect,
or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of
use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectual property rights is granted herein.

Except that a license is hereby granted by ONF to copy and reproduce this specification for
internal use only.

Contact the Open Networking Foundation at https://www.opennetworking.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY (“RANDZ”) LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS
OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

2

Table of Contents
1 Introduction ... 5

2 Motivation ... 6

3 Scope ... 8

4 Normative Language ... 9

5 Terms ..10

5.1 OpenFlow Capable Switch ..10

5.2 OpenFlow Configuration Point ..10

5.3 OpenFlow Logical Switch ..10

5.4 OpenFlow Resource ...10

5.4.1 OpenFlow Queue ...10

5.4.2 OpenFlow Port ...10

5.5 OpenFlow Controller ...10

6 Requirements ..11

6.1 Requirements from the OpenFlow 1.2 Protocol Specification11

6.1.1 Connection Setup to a Controller ...11

6.1.2 Multiple Controllers ..11

6.1.3 Connection Interruption ..12

6.1.4 Encryption ..12

6.1.5 Queues ..12

6.1.6 Ports ..12

6.1.7 Datapath ID ...13

6.2 Operational Requirements ..13

6.3 Requirements for the Switch Management Protocol ..13

7 Data Model ..15

7.1 OpenFlow Capable Switch ..17

7.1.1 UML Diagram ...17

7.1.2 XML Schema ...18

7.1.3 XML Example ..18

7.1.4 Normative Constraints ...19

7.1.5 YANG Specification ...20

7.2 OpenFlow Configuration Point ..20

3

7.2.1 UML Diagram ...21

7.2.2 XML Schema ...21

7.2.3 XML Example ..21

7.2.4 Normative Constraints ...21

7.2.5 YANG Specification ...22

7.3 OpenFlow Logical Switch ..23

7.3.1 UML Diagram ...23

7.3.2 XML Schema ...23

7.3.3 XML Example ..24

7.3.4 Normative Constraints ...24

7.3.5 YANG Specification ...25

7.4 OpenFlow Controller ...26

7.4.1 UML Diagram ...27

7.4.2 XML Schema ...28

7.4.3 XML Example ..29

7.4.4 Normative Constraints ...29

7.4.5 YANG Specification ...30

7.5 OpenFlow Resource ...32

7.5.1 UML Diagram ...32

7.5.2 XML Schema ...32

7.5.3 XML Example ..32

7.5.4 Normative Constraints ...32

7.5.5 YANG Specification ...32

7.6 OpenFlow Port ..32

7.6.1 UML Diagram ...33

7.6.2 XML Schema ...34

7.6.3 XML Example ..35

7.6.4 Normative Constraints ...36

7.6.5 YANG Specification ...37

7.7 OpenFlow Port Feature ...39

7.7.1 UML Diagram ...40

7.7.2 XML Schema ...40

7.7.3 XML Example ..41

4

7.7.4 Normative Constraints ...41

7.7.5 YANG Specification ...42

7.8 OpenFlow Queue ..43

7.8.1 UML Diagram ...44

7.8.2 XML Schema ...44

7.8.3 XML Example ..45

7.8.4 Normative Constraints ...45

7.8.5 YANG Specification ...46

8 Binding to NETCONF ...48

9 Appendix A: XML Schema ...50

10 Appendix B: YANG Specification ..60

11 Bibliography ...70

12 Appendix C: Revision History ...71

13 Appendix D: Considerations for Next or Future Releases ...73

5

1 Introduction
This document describes the motivation, scope, requirements, and specification of the standard

configuration and management protocol of an operational context which is capable of containing

an OpenFlow 1.2 switch as described in (1). This configuration and management protocol is

referred to as OF-CONFIG and is a companion protocol to OpenFlow. This document specifies

version 1.0 of OF-CONFIG.

Figure 1: An OpenFlow Configuration Point communicates with an operational context which is capable of
supporting an OpenFlow Switch using the OpenFlow Configuration and Management Protocol (OF-CONFIG)

The reader of this document is assumed to be familiar with the OpenFlow protocol and

OpenFlow related concepts. Reading the OpenFlow whitepaper (2) and the OpenFlow

Specification (1)is recommended prior to reading this document.

It is strongly recommended that switches which implement OF-CONFIG make changes to the

OpenFlow operational context described in this document via OF-CONFIG and limit changes to

the OpenFlow operational context via other methods (e.g. command line interfaces and other

legacy management protocols). Future versions may better support other methods of change

with detailed notification to the OpenFlow Configuration Point via OF-CONFIG.

OpenFlow
Switch

OpenFlow
Controller

OpenFlow
Protocol

Operational Context

OF - CONFIG

OpenFlow

Configuration

Point

6

2 Motivation
The OpenFlow protocol assumes that an OpenFlow datapath (e.g. an Ethernet switch which

supports the OpenFlow protocol) has been configured with various artifacts such as the IP

addresses of OpenFlow controllers. The motivation for the OpenFlow Configuration Protocol

(OF-CONFIG) is to enable the remote configuration of OpenFlow datapaths. While the

OpenFlow protocol generally operates on a time-scale of a flow (i.e. as flows are added and

deleted), OF-CONFIG operates on a slower time-scale.

OF-CONFIG frames an OpenFlow datapath as an abstraction called an OpenFlow Logical

Switch. The OF-CONFIG protocol enables configuration of essential artifacts of an OpenFlow

Logical Switch so that an OpenFlow controller can communicate and control the OpenFlow

Logical switch via the OpenFlow protocol.

OF-CONFIG 1.0 introduces an operating context for one or more OpenFlow datapaths called an

OpenFlow Capable Switch. An OpenFlow Capable Switch is intended to be equivalent to a

actual physical or virtual network element (e.g. an Ethernet switch) which is hosting one or more

OpenFlow datapaths by partitioning a set of OpenFlow related resources such as ports and

queues among the hosted OpenFlow datapaths. The OF-CONFIG protocol enables dynamic

association of the OpenFlow related resources of an OpenFlow Capable Switch with specific

OpenFlow Logical Switches which are being hosted on the OpenFlow Capable Switch. OF-

CONFIG does not specify or report how the partitioning of resources on an OpenFlow Capable

Switch is achieved. OF-CONFIG assumes that resources such as ports and queues are

partitioned amongst multiple OpenFlow Logical Switches such that each OpenFlow Logical

Switch can assume full control over the resources that is assigned to it.

OF-CONFIG 1.0 makes simplifying assumptions about the architecture of OpenFlow switches.

The specification is deliberately decoupled from whether the switch supports flowvisor or other

virtualization models.

The service which sends OF-CONFIG messages to an OpenFlow Capable Switch is called an

OpenFlow Configuration Point. No assumptions are made about the nature of the OpenFlow

Configuration Point. For example, it may be a service provided by software acting as an

OpenFlow controller or it may by a service provided by a traditional network management

framework. Any interaction between the OpenFlow Configuration Points and OpenFlow

controllers is outside the scope of OF-CONFIG 1.0.

Figure 2 shows the basic abstractions detailed in OF-CONFIG 1.0 and the lines indicate that the

OpenFlow Configuration Points and OpenFlow Capable Switches communicate via OF-

OFCONFIG while OpenFlow Controllers and OpenFlow Logical Switches (i.e. datapaths)

communicate via OpenFlow.

7

Figure 2 Relationship between components defined in this specification, the OF-CONFIG protocol and the
OpenFlow protocol

A guiding principle in the development of this specification is to keep the protocol and schema

simple and leverage existing protocols and schema models where possible. This helped in quick

development of this specification and hopefully will also enable easier adoption, the motivation

being to supplement the OpenFlow specification in a meaningful way to further drive the

adoption of the software defined networking vision.

OpenFlow

Manager

OpenFlow

Controller

OpenFlow

ControllerOpenFlow

Controller

OF

Resource

(e.g.

Port)

OF

Resource

(e.g.

Port)

OF

Resource

(e.g.

Port)

OF

Resource

(e.g.

Port)

 OF Logical Switch

OpenFlow

Controller(s)

OpenFlow

Controller(s)

OpenFlow Capable Switch

OpenFlow

Configuration Point(s)

 OF Logical Switch

OF-Config
OpenFlow OpenFlow

8

3 Scope
OF-CONFIG 1.0 is focused on the basic functions needed to configure an OpenFlow 1.2

(OFv1.2) datapath. Functionality to be configured includes:

 The assignment of one or more OpenFlow controllers

 The configuration of queues and ports

 The ability to remotely change some aspects of ports (e.g. up/down)

While limited in scope, OF-CONFIG1.0 lays the foundation on top of which various automated

and more advanced configurations will be possible in future revisions. Tunnel configuration,

switch discovery, topology discovery, capability reporting, event triggers, instantiation of

OpenFlow Logical Switches, assignment of resources such as ports and queues to OpenFlow

Logical Switches, and bootstrap of the OpenFlow capable network are outside the scope of OF-

CONFIG 1.0 protocol. These may be included in future versions.

9

4 Normative Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in RFC 2119 (3).

10

5 Terms
The following section lists several terms and definitions used in this document.

5.1 OpenFlow Capable Switch
An OpenFlow Capable switch is a physical or virtual switching device which can act an as

operational context for an OpenFlow Logical Switch. OpenFlow Capable Switches contain and

manage OpenFlow Resources which may be associated with an OpenFlow Logical Switch

context.

5.2 OpenFlow Configuration Point
An OpenFlow Configuration Point configures one or more OpenFlow Capable Switches via the

OpenFlow Configuration and Management Protocol (OF-CONFIG).

5.3 OpenFlow Logical Switch
An OpenFlow Logical Switch is a set of resources (e.g. ports) from an OpenFlow Capable

Switch which can be associated with a specific OpenFlow Controller. An OpenFlow Logical

switch is an instantiation of an OpenFlow Datapath as specified in (1).

5.4 OpenFlow Resource
An OpenFlow Resource is a resource (e.g. port or queue) which is associated with an

OpenFlow Capable Switch and may be associated with an OpenFlow Logical Switch.

5.4.1 OpenFlow Queue

An OpenFlow Queue is a queuing resource of an OpenFlow Logical Switch as described in the

OpenFlow specification as the queue component of an OpenFlow datapath.

5.4.2 OpenFlow Port

An OpenFlow Port is a forwarding interface of an OpenFlow Logical Switch as described in the

OpenFlow specification as the port component of an OpenFlow datapath.

5.5 OpenFlow Controller
An OpenFlow Controller is software which controls OpenFlow Logical Switches via the

OpenFlow protocol.

11

6 Requirements
This section describes requirements for the design of OF-CONFIG 1.0.

6.1 Requirements from the OpenFlow 1.2 Protocol Specification
The specification of version 1.2 of the OpenFlow protocol (1) includes explicit and implicit

requirements for the configuration of OpenFlow switches. In (1) the term ‘configuration’ is used

for two different kinds of operations: Configuration using the OpenFlow protocol and

configuration outside of the OpenFlow protocol. The first kind of configuration is dealt with in (1).

OF-CONFIG 1.0 enables other configuration of OpenFlow switches.

6.1.1 Connection Setup to a Controller

Section 6.2 (Connection Setup) of (1) discusses the process of setting up a connection between

the OpenFlow switch and an OpenFlow controller. The switch initiates the connection applying

three parameters that need to be configured in advance:

 the IP address of the controller

 the port number at the controller

 the transport protocol to use, either TLS or TCP

OF-CONFIG 1.0 must provide means for configuring these parameters.

6.1.2 Multiple Controllers

Section 6.3 of (1) discusses how a switch deals with multiple controllers simultaneously. This

implicitly requires OF-CONFIG 1.0 to provide means for configuring multiple instances of the

parameter set listed in 6.1.1 for specifying the connection setup to multiple controllers.

6.1.3 Openflow Logical Switches

The Openflow 1.2 protocol specifies various kinds of Openflow resources associated with an

Openflow Logical Switch. The OF-CONFIG protocol must support the configuration of these

Openflow resources associated with an Openflow Logical Switch. Examples of resources

include queues and ports that have been assigned to an Openflow Logical Switch. It is assumed

that Openflow Logical Switches have been instantiated out of band, for example, an

administrator may have created them upfront. In addition, partitioning/assignment of Openflow

resources amongst multiple Openflow switches that may exist in an Openflow Capable Switch

has also been done out of band.

12

6.1.4 Connection Interruption

Section 6.4 of (1) discusses the choice of two modes the switch should immediately enter after

losing contact with all controllers. The modes are

 fail secure mode

 fail standalone mode

OF-CONFIG protocol must provide means for configuring the mode to enter in such a case.

6.1.5 Encryption

Section 6.4 of (1) discusses encryption of connections to controllers that use TLS. It explicitly

states “Each switch must be user-configurable with one certificate for authenticating the

controller (controller certificate) and the other for authenticating to the controller (switch

certificate)”. Hence, OF-CONFIG must provide means for configuring a switch certificate and a

controller certificate for each controller that is configured to use TLS. This requirement is not

addressed in OF-CONFIG 1.0 and will be addressed in a future version.

6.1.6 Queues

Section A.3.6 of (1) the configuration of queues. Queue in (1) have three parameters that may

be configurable:

 min-rate

 max-rate

 experimenter

OF-CONFIG 1.0 must provide means for configuring these parameters.

6.1.7 Ports

The OpenFlow protocol already contains methods to configure ports of OpenFlow switches. The

OpenFlow protocol specification (1) does not explicitly require an external configuration means,

and therefore we cannot derive the. requirement for configuring ports from (1). However, the

configuration of ports is an essential step of configuring a network and thus an obvious

requirement for OF-CONFIG 1.0. Section A.2.1 of (1) defines the following parameters for port

configuration:

 current-speed

 no-recv

 no-fwd

 no-packet-in

 link-down

 blocked

 live

OF-CONFIG 1.0 must provide means for configuring these parameters.

Also defined in the OpenFlow protocol specification are port features. There are four sets of

these features for current, advertised, supported, and peer-advertised features. Feature sets

13

current, supported, and peer-advertised contain state information and are not to be configured.

Only advertised features could potentially be configured with the following parameters:

 speed

 duplex-mode

 copper-medium

 fiber-medium

 auto-negotiation

 pause

 asymmetric-pause

OF-CONFIG 1.0 must provide means for configuring these advertised features.

6.1.8 Datapath ID

Section A.3.1 of (1) discusses the datapath ID of a switch. It is a 64-bit filed with the lower 48 bit

intended for the switch MAC address and the remaining 16 bit left to the switch operator.

Although not explicitly requested by (1), OF-CONFIG should provide means for configuring the

datapath ID.

6.2 Operational Requirements
The OF-CONFIG 1.0 must meet support the following scenarios:

1. OF-CONFIG 1.0 must support an OpenFlow Capable Switch being configured by

multiple OpenFlow Configuration Points.

2. OF-CONFIG 1.0 must support an OpenFlow Configuration Point managing multiple

OpenFlow Capable Switches.

3. OF-CONFIG 1.0 must support an OpenFlow Logical Switch being controlled by multiple

OpenFlow Controllers.

4. OF-CONFIG 1.0 must support configuring ports and queues of an OpenFlow Capable

Switch that have been assigned to an OpenFlow Logical Switch.

6.3 Requirements for the Switch Management Protocol
OF-CONFIG 1.0 defines a communication standard between an OpenFlow switch and an

OpenFlow Configuration Point. It consists of a network management protocol specified in

Section 8 and a data model defined in Section 7. This subsection specifies requirements for the

network management protocol. The protocol must comply with the following requirements:

1. The protocol must be secure providing integrity, privacy, and authentication.

Authentication of both ends, switch and configuration point, must be supported.

2. The protocol must support reliable transport of configuration requests and replies.

3. The protocol must support connection setup by the configuration point.

4. The protocol should support connection setup by the switch.

5. The protocol must be able to carry partial switch configurations.

6. The protocol must be able to carry bulk switch configurations.

7. The protocol must support the configuration point setting configuration data at the switch

14

8. The protocol must support the configuration point retrieving configuration data from the

switch.

9. The protocol should support the configuration point retrieving status information from the

switch.

10. The protocol must support creation, modification and deletion of configuration

information at the switch.

11. The protocol must support reporting on the result of a successful configuration request.

12. The protocol must support reporting error codes for partially or completely failed

configuration requests.

13. The protocol should support sending configuration requests independent of the

completion of previous requests.

14. The protocol should support transaction capabilities including rollback per operation.

15. The protocol must provide means for asynchronous notifications from the switch to the

configuration point.

16. The protocol should be extensible.

17. The protocol should support reporting its capabilities.

15

7 Data Model
This section specifies the data model for OF-CONFIG 1.0. Configurations of an OpenFlow

Capable Switch or for portions of it are encoded in XML. The data model is structured into

classes and attributes of classes. Each class is described in a separate sub-section by

1. a UML diagram

giving an overview of the class,

2. a portion of an XML schema

extracted from the normative XML schema in Appendix A,

3. an example for XML code encoding an instance of the class,

4. normative constraints for instances of the class

extending the XML schema by semantic specifications,

5. a portion of a YANG (9) module

extracted from the YANG module in Appendix B.

The full XML schema and the full YANG module are listed in Appendices A and B. Normative for

OF-CONFIG 1.0 is the XML schema in Appendix A and the normative constraints in sub-

sections 7.X.4. The YANG module in Appendix B incorporates the XML schema specifications

as well as the normative constraints.

OF-CONFIG specific terminology used for describing the model is defined in Section 5. The

following UML diagram describes the top-level classes of the data model.

16

Figure 3: UML Class Diagram for OF-CONFIG Data Model

The core of the model is an OpenFlow Capable Switch that is configured by OpenFlow

Configuration Points.

The switch contains a set of resources of different types. For OF-CONFIG 1.0, two types of

resources are included in the model: OpenFlow Ports and OpenFlow Queues. More resource

types may be added in future revisions of OF-CONFIG. OpenFlow resources can be made

available for use to OpenFlow Logical Switches.

Instances of OpenFlow logical switches are contained within the OpenFlow Capable Switch. A

set of OpenFlow Controllers is assigned to each OpenFlow logical switch.

The data model contains several identifiers, most of them encoded as an XML element <id>.

Currently these IDs are defined as strings with required uniqueness in a certain context. Beyond

uniqueness requirements, no further guidance is given on how to build these strings. This may

be changed in the future. Particularly, the use of Universal Resource Names (URNs) is

envisioned. This requires developing a naming scheme for URNs in OF-CONFIG and

registering a URN namespace for the ONF. It is expected that recommendations for URN-based

OpenFlow

Capable Switch

Instantiates
OpenFlow

Logical Switch

Uses

OpenFlow

Resource

OpenFlow

Port

OpenFlow

Queue

Contains

Type

OpenFlow

Configuration

Point

OpenFlow

Controller

Controls

{the set of used

Resources

is a subset of the

contained Resources

of a Capable

Switch instance}

Configures

*

*

*

*

*

17

identifiers will be introduced by a future version of OF-CONFIG. Since URNs are represented as

strings, such recommendations can be made compatible with identifiers in OF-CONFIG v1.0.

When issuing a NETCONF get request all elements in the requested sub-tree must be

returned in the result. Those elements that can be modified by a NETCONF edit-config

request or retrieved by a NETCONF get-config request are identified in the normative

constraints sub-sections 8.X.4.

7.1 OpenFlow Capable Switch
The OpenFlow Capable Switch serves as the root element for an OpenFlow configuration. It has

relationships to

 OpenFlow Configuration Points that manage and particularly configure the OpenFlow

Capable Switch,

 OpenFlow logical switches that are contained and instantiated within the OpenFlow

Capable Switch,

 OpenFlow Resources contained in the OpenFlow Capable Switch that may be used by

OpenFlow Logical Switches.

7.1.1 UML Diagram

Figure 4: Data Model Diagram for OpenFlow Capable Switch

OpenFlow Capable Switch

Capable Switch ID: String

OpenFlow

Configuration

Point

OpenFlow

Resource

OpenFlow

Logical Switch

* **

18

7.1.2 XML Schema

<xs:complexType name="OFCapableSwitchType">

<xs:sequence>

<xs:element name="id"

type="OFConfigID"/>

<xs:element name="configuration-points"

type="OFConfigurationPointListType"/>

<xs:element name="resources"

type="OFCapableSwitchResourceListType"/>

<xs:element name="logical-switches"

type="OFLogicalSwitchListType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFConfigurationPointListType">

<xs:sequence>

<xs:element name=“configuration-point”

type="OFConfigurationPointType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFCapableSwitchResourceListType">

<xs:sequence>

<xs:element name="port"

type="OFPortType" maxOccurs="unbounded"/>

<xs:element name="queue"

type="OFQueueType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFLogicalSwitchListType">

<xs:sequence>

<xs:element name="logical-switch"

type="OFLogicalSwitchType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

7.1.3 XML Example

<capable-switch>

<id>CapableSwitch0</id>

<configuration-points>

...

</configuration-points>

<resources>

...

</resources>

<logical-switches>

...

</logical-switches>

</capable-switch>

19

7.1.4 Normative Constraints

The OpenFlow Capable Switch is identified by the OpenFlow Configuration Point with identifier

<id>. The identifier MUST be unique within the context of potential OpenFlow Configuration

Points. It MUST be persistent across reboots of the OpenFlow Capable Switch.

Element <configuration-points> contains a list of all Configuration Points known to the

OpenFlow Capable Switch that manage it or have managed it using OF-CONFIG.

Element <resources> contains lists of all resources of an OpenFlow Capable Switch that can

be used by OpenFlow Logical Switches. Resources are listed here independent of their actual

assignment to OpenFlow Logical Switches. They may be available to be assigned to an

OpenFlow Logical Switch or already in use by an OpenFlow Logical Switch.

Element <logical-switches> contains a list of all OpenFlow Logical Switches available on

the OpenFlow Capable Switch.

20

7.1.5 YANG Specification

container capable-switch {

description "The OpenFlow Capable Switch containing logical switches,

and resources that can be assigned to logical switches.";

leaf id {

type inet:uri;

mandatory true;

description "An unique but locally arbitrary identifier that

identifies a Capable Switch towards the management system and

is persistent across reboots of the system.";

}

container configuration-points {

list configuration-point {

key "id";

unique "id";

description "The list of all Configuration Points known to the

OpenFlow Capable Switch that may configure it using OF-

CONFIG.";

uses openflow-configuration-point-grouping;

}

}

container resources {

description "A lists containing all resources of the OpenFlow

Capable Switch.";

...

}

container logical-switches {

description "This element contains all OpenFlow Logical Switches

on the OpenFlow Capable Switch.";

list switch {

key "id";

unique "id";

description "The list of all OpenFlow Logical Switches the

OpenFlow Capable Switch.";

uses openflow-logical-switch-grouping;

}

}

}

7.2 OpenFlow Configuration Point
The Configuration Point is an entity that manages the switch using the OF-CONFIG protocol.

Attributes of an OpenFlow Configuration Point allow the OpenFlow Capable Switches to identify

a Configuration Point and specify which protocol is used for communication between

Configuration Point and OpenFlow Capable Switch. The OpenFlow Capable Switch stores a list

of Configuration Points that manage it or have managed it. An OpenFlow Configuration Point is

to an OpenFlow Capable Switch what an OpenFlow Controller is to an OpenFlow Logical

switch.

Instances of the Configuration Point class are used by switches to connect to a configuration

point. Currently the only transport mapping that supports a connection set-up initiated by the

switch to be configured is the mapping to the BEEP protocol (5). Other NETCONF transport

21

mappings (6,7,8) may be extended in the future to also support connection set-up in this

direction.

7.2.1 UML Diagram

Figure 5: Data Model Diagram for an OpenFlow Configuration Point

7.2.2 XML Schema

<xs:complexType name="OFConfigurationPointType">

<xs:sequence>

<xs:element name="id"

type="OFConfigID"/>

<xs:element name="uri"

type="inet:uri"/>

<xs:element name="protocol"

type="OFConfigurationPointProtocolType"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFConfigurationPointProtocolType">

<xs:restriction base="xs:string">

<xs:enumeration value="ssh"/>

<xs:enumeration value="soap"/>

<xs:enumeration value="tls"/>

<xs:enumeration value="beep"/>

</xs:restriction>

</xs:simpleType>

7.2.3 XML Example

<configuration-point>

<id>ConfigurationPoint1</id>

<uri>uri0</uri>

<protocol>ssh</protocol>

<configuration-point>

7.2.4 Normative Constraints

OF-CONFIG uses the NETCONF protocol as described in Section 8. NETCONF can use four

different transport protocols: SSH, BEEP, SOAP, and TLS. Element <protocol> defines the

transport protocol that the Configuration Point used last when communicating via NETCONF

with the OpenFlow Capable Switch. If this element is missing, then the default protocol is SSH.

OpenFlow Configuration

Point

Manager ID: String

URI: URI

Protocol:

{ssh,

 soap,

 tls,

 beep}

22

When an OpenFlow Capable Switch connects to a configuration point it must make sure that the

used connection information is stored in an instance of the Configuration Point class. If such an

instance does not exist, the OpenFlow Capable Switch MUST create an instance that it fills with

connection information.

An OpenFlow Capable Switch that cannot initiate a connection to a configuration point does not

have to implement the Configuration Point class. It SHOULD block attempts to write to

instances of the Configuration Point class with NETCONF <edit-config>operations.

Instances of the Configuration Point class SHOULD be stored persistently across reboots of the

OpenFlow Capable Switch.

A Configuration Point is identified by OpenFlow Capable Switches with identifier <id>. The

identifier MUST be unique within the context of potential OpenFlow Capable Switches.

Element <uri> identifies the location of the configuration point as a service resource and

MUST include all information necessary for the OpenFlow Capable Switch to reconnect to the

Configuration Point should it become disconnected (e.g. protocol, fully qualified domain name,

and port).

The following elements of the Configuration Point can be modified by a NETCONF edit-

config request or retrieved by a NETCONF get-config request: <id>, <uri>,

<protocol>.

7.2.5 YANG Specification

grouping openflow-configuration-point-grouping {

description "Representation of an OpenFlow Configuration Point.";

leaf id {

type inet:uri;

description "An identifier that identifies a Configuration Point

of the OpenFlow Capable Switch.";

}

leaf uri {

type inet:uri;

description "A locator of the Configuration Point. This element

MAY contain a locator of the Configuration Point including, for

example, an IP address and a port number.";

}

leaf protocol {

type enumeration {

enum "ssh";

enum "soap";

enum "tls";

enum "beep";

}

default "ssh";

description "The transport protocol that the Configuration Point

uses when communicating via NETCONF with the OpenFlow Capable

Switch.";

reference "The mappings of NETCONF to different transport

protocols are defined in RFC 6242 for SSH, RFC 4743 for SOAP,

RFC 4744 for BEEP, and RFC 5539 for TLS";

23

}

}

7.3 OpenFlow Logical Switch
The OpenFlow Logical Switch represents an instant of a logical switch that is available or can

be made available on an OpenFlow Capable Switch. An OpenFlow Logical switch is a logical

context which behaves as the datapath as described in the OpenFlow specification. The

OpenFlow Logical Switch is connected to one or more OpenFlow Controllers via the OpenFlow

protocol. It uses resources of the OpenFlow Capable Switch for realizing the capabilities offered

via the OpenFlow protocol. The OpenFlow Logical Switch has relationships to

 OpenFlow Controllers that control the OpenFlow Capable Switch

 OpenFlow Resources that are available from the OpenFlow Capable Switch

7.3.1 UML Diagram

Figure 6: Data Model Diagram for an OpenFlow Logical Switch

7.3.2 XML Schema

<xs:complexType name="OFLogicalSwitchType">

<xs:sequence>

<xs:element name="id"

type="OFConfigID"/>

<xs:element name="datapath-id"

type="OFConfigID"/>

<xs:element name="enabled"

type="xs:boolean"/>

<xs:element name="lost-connection-behavior"

type="OFLogicalSwitchLostConnnectionBehavior"/>

<xs:element name="controllers"

type="OFControllerListType"/>

<xs:element name="resources"

type="OFLogicalSwitchResourceListType"/>

</xs:sequence>

OpenFlow Logical Switch

Logical Switch ID: String

Datapath ID: String

Enabled: Boolean

OpenFlow

Controllers

OpenFlow

Resources

* *

24

</xs:complexType>

<xs:simpleType name="OFLogicalSwitchLostConnnectionBehavior">

<xs:restriction base="xs:string">

<xs:enumeration value="failSecureMode"/>

<xs:enumeration value="failStandaloneMode"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFControllerListType">

<xs:sequence>

<xs:element name="controller"

type="OFControllerType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFLogicalSwitchResourceListType">

<xs:sequence>

<xs:element name="port"

type="OFConfigID" maxOccurs="unbounded"/>

<xs:element name="queue"

type="OFConfigID"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

7.3.3 XML Example

<logical-switch>

<id>LogicalSwitch5</id>

<datapath-id>datapath-id0</datapath-id>

<enabled>true</enabled>

<lost-connection-behavior>failSecureMode</lost-connection-behavior>

<controllers>

...

</controllers>

<resources>

<port>port2</port>

<port>port3</port>

<queue>queue0</queue>

<queue>queue1</queue>

</resources>

</logical-switch>

7.3.4 Normative Constraints

An OpenFlow Logical Switch is identified by identifier <id>. The identifier MUST be unique

within the context of the OpenFlow Capable Switch. It MUST be persistent across reboots of the

OpenFlow Capable Switch.

Element <datapath-id> identifies the OpenFlow Logical Switch to the OpenFlow controllers

that has been assigned to the OpenFlow Logical Switch. The <datapath-id> MUST be

unique within the context of OpenFlow Controllers associated with OpenFlow Logical

25

Switch.The <datapath-id>is a string value that MUST be formatted as a sequence of 10 2-

digit hexadecimal numbers that are separated by colons,

e.g.,01:23:45:67:89:ab:cd:ef:01:23. The case of the hexadecimal digits MUST be

ignored.

Element <enabled> denotes the administrative state of the OpenFlow Logical Switch. A value

of false means the OpenFlow Logical Switch MUST NOT communicate with any OpenFlow

Controllers, MUST NOT conduct any OpenFlow processing, and SHOULD NOT be utilizing

computational or network resources of the underlying platform.

Element <lost-connection-behavior> defines the behavior of the OpenFlow Logical

Switch in case it looses contact with all controllers. Section 6.4 of the OpenFlow specification

1.2 defines two alterantive modes in such a case: fails secure mode and fail standalone mode.

These are the only llowed values for this element. Default is the fail secure mode.

Element <resources> contains the list of all resources of the OpenFlow Capable Switch that

the OpenFlow Logical Switch has exclusive access to. Any resource identified in the

<resources>list of a Logical Switch MUST be present in the <resources> list of the

OpenFlow Capable Switch containing the OpenFlow Logical Switch. Any resource identified in

the <resources> list of anOpenFlow Logical Switch MUST NOT be identified in the

<resources> list of any other OpenFlow Logical Switch.

The following elements of the OpenFlow Logical Switch can bemodified by a NETCONF edit-

config request or retrieved by a NETCONF get-config request: <id>, <datapath-id>,

<enabled>. Elements in the <resources> list can also be modified and retrieved by those

commands.

7.3.5 YANG Specification

typedef datapath-id-type {

type string {

pattern

'[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){7}';

}

description "The datapath-id type represents an OpenFlow datapath

identifier.";

}

grouping openflow-logical-switch-grouping {

description "This grouping specifies all properties of an OpenFlow

Logical Switch.";

leaf id {

type inet:uri;

mandatory true;

description "An unique but locally arbitrary identifier that

identifies a Logical Switch within a Capable Switch and is

persistent across reboots of the system.";

}

leaf datapath-id {

type datapath-id-type;

mandatory true;

26

description "The datapath identifier of the Logical Switch that

uniquely identifies this Logical Switch in the controller.";

}

leaf enabled {

type boolean;

mandatory true;

description "Specifies if the Logical Switch is enabled.";

}

container controllers {

description "The list of controllers for this Logical switch.";

list controller {

key "id";

unique "id";

description "The list of controllers that are assigned to the

OpenFlow Logical Switch.";

uses openflow-controller-grouping;

}

}

container resources {

description "The following lists reference to all resources of

the OpenFlow Capable Switch that the OpenFlow Logical Switch

has exclusive access to.";

leaf-list port {

type leafref {

path "/capable-switch/resources/port/resource-id";

}

description "The list references to all port resources of the

OpenFlow Capable Switch that the OpenFlow Logical Switch has

exclusive access to.";

}

leaf-list queue {

type leafref {

path "/capable-switch/resources/queue/resource-id";

}

description "The list references to all queue resources of the

OpenFlow Capable Switch that the OpenFlow Logical Switch has

exclusive access to.";

}

}

}

7.4 OpenFlow Controller
The OpenFlow Controller class represents an entity that acts as OpenFlow Controller of an

OpenFlow Logical Switch. Attributes of the class indicate the role of the controller and

parameters of the OpenFlow connection to the controller.

27

7.4.1 UML Diagram

Figure 7: Data Model Diagram for an OpenFlow Controller

OpenFlow Controller

Controller ID: String

Role: Enum

{Master,

 Slave,

 Equal}

Controller IP: IP Address

Controller Port: Integer

Local IP: IP Address

Local Port: Integer

Protocol: Enum

{TCP,

 TLS}

OpenFlow State

Connection State: Enum

{Up,

 Down}

Current Version ID: String

Supported OpenFlow Version

Version ID: String

*

1

28

7.4.2 XML Schema

<xs:complexType name="OFControllerType">

<xs:sequence>

<xs:element name="id"

type="OFConfigID"/>

<xs:element name="role"

type="OFControllerRoleType"/>

<xs:element name="ip-address"

type="inet:ip-prefix"/>

<xs:element name="port"

type="inet:port-number"/>

<xs:element name="local-ip-address"

type="inet:ip-address"/>

<xs:element name="local-port"

type="inet:port-number"/>

<xs:element name="protocol"

type="OFControllerProtocolType"/>

<xs:element name="state"

type="OFControllerOpenFlowStateType"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFControllerRoleType">

<xs:restriction base="xs:string">

<xs:enumeration value="master"/>

<xs:enumeration value="slave"/>

<xs:enumeration value="equal"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="OFControllerProtocolType">

<xs:restriction base="xs:string">

<xs:enumeration value="tcp"/>

<xs:enumeration value="tls"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFControllerOpenFlowStateType">

<xs:sequence>

<xs:element name="connection-state"

type="OFControllerConnectionStateType"/>

<xs:element name="current-version"

type="OFOpenFlowVersionType"/>

<xs:element name="supported-versions"

type="OFOpenFlowSupportedVersionsType"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFControllerConnectionStateType">

<xs:restriction base="xs:string">

<xs:enumeration value="up"/>

<xs:enumeration value="down"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFOpenFlowSupportedVersionsType">

29

<xs:sequence>

<xs:element name="version" type="OFOpenFlowVersionType"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFOpenFlowVersionType">

<xs:restriction base="xs:string">

<xs:enumeration value="1.2"/>

<xs:enumeration value="1.1"/>

<xs:enumeration value="1.0"/>

</xs:restriction>

</xs:simpleType>

7.4.3 XML Example

<controller>

<id>Controller3</id>

<role>master</role>

<ip-address>192.168.2.1/26</ip-address>

<port>6633</port>

<local-ip-address>192.168.2.129</local-ip-address>

<local-port>32768</local-port>

<protocol>tcp</protocol>

<state>

<connection-state>up</connection-state>

<current-version>1.2</current-version>

<supported-versions>

<version>1.2</version>

<version>1.1</version>

</supported-versions>

</state>

</controller>

7.4.4 Normative Constraints

An OpenFlow Controller is identified by identifier <id>. The identifier MUST be unique within

the context of the OpenFlow Capable Switch. It MUST be persistent across reboots of the

OpenFlow Capable Switch.

Element <role> indicates the role of the controller. Semantics of these roles are specified in

the OpenFlow 1.2 specification. It is RECOMMENDED that the roles of controllers are not

configured by OF-CONFIG 1.0 but determined using the OpenFlow 1.2 protocol. Controllers

configured by OF-CONFIG 1.0 SHOULD have the default role “equal”. A role other than “equal”

MAY be assigned to a controller. Roles “slave” and “equal” MAY be assigned to multiple

controllers. Role “master” MUST NOT be assigned to more than one controller.

Elements <ip-address> and <port> indicate the IP address and the port number of the

OpenFlow Controller. The port number is optional. If not present, the default port number 6633

is assumed to be used.

Elements <local-ip-address> and <local-port> indicate the IP address and the port

number used by the OpenFlow Logical Switch. Both elements are optional.

30

Element <protocol> indicates the transport protocol used for the OpenFlow connection.

OpenFlow supports two transport protocols, TCP and TLS. If this optional element is not

present, TLS is assumed to be used.

Element <state> represents various elements of known state of the OpenFlow Controller.

Element <connection-state>represents the administrative state of the OpenFlow

connection between the OpenFlow Logical Switch and the OpenFlow Controller. A value of

down means that the OpenFlow Logical Switch MUST NOT communicate with the OpenFlow

Controller via theOpenFlow protocol. If the value of <connection-state> is set to up,

element <current-version>MUST represent the version of the OpenFlow protocol in use

between the OpenFlow Logical Switch and the OpenFlow Controller. The element

<supported-versions>represents the versions of the OpenFlow protocol that the OpenFlow

Controller supports.<supported-versions> SHOULD be set to all versions of the OpenFlow

protocol supported by the OpenFlow Controller.

The following elements of the OpenFlow Controller can be modified by a NETCONF edit-config

request or retrieved by a NETCONF get-config request: <id>, <role>, <ip-address>, <port>,

<local-ip-address>, <local-port>, <protocol>, <connection-state>, <current-version>,

<supported-versions>.

7.4.5 YANG Specification

typedef openflow-version {

type enumeration {

enum "1.0";

enum "1.1";

enum "1.2";

}

description "This enumeration contains the all OpenFlow versions

released so far.";

}

grouping openflow-controller-grouping {

description "This grouping specifies all properties of an OpenFlow

Logical Switch Controller.";

leaf id {

type inet:uri;

mandatory true;

description "An unique but locally arbitrary identifier that

identifies a controller within a OpenFlow Logical Switch and is

persistent across reboots of the system.";

}

leaf role {

type enumeration {

enum master;

enum slave;

enum equal;

}

default equal;

description "The predefined role of the controller.";

}

leaf ip-address {

31

type inet:ip-address;

mandatory true;

description "The IP address of the controller to connect to.";

}

leaf port {

type inet:port-number;

default 6633;

description "The port number at the controller to connect to.";

}

leaf local-ip-address {

type inet:ip-address;

description "This specifies the source IP for packets sent to

this controller and overrides the default IP used.";

}

leaf local-port {

type inet:port-number;

default 0;

description "The port number the switch listens on. If 0 the port

is chosen dynamically.";

}

leaf protocol {

type enumeration {

enum "tcp";

enum "tls";

}

default "tcp";

description "The protocol used for connecting to the

controller.";

}

container state {

description "This container holds connection state information

that indicate if the Logical Switch is connected, what versions

are supported, and which one is used.";

leaf connection-state {

type up-down-state-type;

description "This object indicates if the Logical Switch is

connected to the controller.";

}

leaf current-version {

type openflow-version;

description "This object contains the current OpenFlow version

used between Logical Switch and Controller.";

}

leaf-list supported-versions {

type openflow-version;

description "This list of objects contains all the OpenFlow

versions supported the controller.";

}

}

}

32

7.5 OpenFlow Resource
OpenFlow Resource is a superclass of OpenFlow Port and OpenFlow Queue. The superclass

contains the identifier attribute that is inherited by all subclasses in addition to their individual

identifiers.

7.5.1 UML Diagram

Figure 8: Data Model Diagram for an OpenFlow Resource

7.5.2 XML Schema

<xs:complexType name="OFResourceType">

<xs:sequence>

<xs:element name="resource-id" type="OFConfigID"/>

</xs:sequence>

</xs:complexType>

7.5.3 XML Example

The superclass is not instantiated.

7.5.4 Normative Constraints

An OpenFlow Resource is identified by identifier <resource-id>. The identifier MUST be

unique within the context of the OpenFlow Capable Switch. It MUST be persistent across

reboots of the OpenFlow Capable Switch.

7.5.5 YANG Specification

The base OpenFlow Resource has no specific correspondence in the YANG specification. The

<resource-id> property is included in each individual resource.

7.6 OpenFlow Port
The OpenFlow Port is an instance of an OpenFlow resource. It contains a port configuration

object, a port state object and a list of port feature objects. While there can’t be more than one

instance of the port configuration and the port state, there may be multiple Port Features. The

OpenFlow Resource

Resource ID: String

{ID which is unique within the

context of an OF Capable

Switch}

OpenFlow

Port

OpenFlow

Queue

33

OpenFlow Port is a logical context which represents a port as described in the OpenFlow

protocol specification.

7.6.1 UML Diagram

Figure 9: Data Model Diagram for an OpenFlow Port

OpenFlow Port

OpenFlow

Port

Advertised Features

OpenFlow

Port

Supported Features

OpenFlow

Port

Current Features

OpenFlow

Port

Advertised Peer

Features

*
OpenFlow

Port

Feature

Port Number: Integer

Port Name: String

Current Rate: Integer

{bitrate in kbps}

Max Rate: Integer

{bitrate I kbps}

1

1

1

1

OpenFlow Port

Configuration

OpenFlow Port

State

Oper State: Enum

{Up,Down}

Blocked: Bool

Live: Bool

Admin State: Enum

{Up, Down}

No Receive: Bool

No Forward: Bool

No Packet In: Bool

1

1

34

7.6.2 XML Schema

<xs:complexType name="OFPortType">

<xs:complexContent>

<xs:extension base="OFResourceType">

<xs:sequence>

<xs:element name="number"

type="xs:unsignedInt"/>

<xs:element name="name"

type="xs:string"/>

<xs:element name="current-rate"

type="xs:unsignedLong"/>

<xs:element name="max-rate"

type="xs:unsignedLong"/>

<xs:element name="configuration"

type="OFPortConfigurationType"/>

<xs:element name="state" type="OFPortStateType"/>

<xs:element name="features"

type="OFPortFeatureMasterList"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OFPortFeatureMasterList">

<xs:sequence>

<xs:element name="current"

type="OFPortCurrentFeatureListType"/>

<xs:element name="advertised"

type="OFPortOtherFeatureListType"/>

<xs:element name="supported"

type="OFPortOtherFeatureListType"/>

<xs:element name="advertised-peer"

type="OFPortOtherFeatureListType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFPortConfigurationType">

<xs:sequence>

<xs:element name="admin-state"

type="OFPortStateOptionsType"/>

<xs:element name="no-receive"

type="xs:boolean"/>

<xs:element name="no-forward"

type="xs:boolean"/>

<xs:element name="no-packet-in"

type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

<xs:complexTypename="OFPortStateType">

<xs:sequence>

<xs:element name="oper-state"

type="OFPortStateOptionsType"/>

<xs:element name="blocked"

type="xs:boolean"/>

<xs:element name="live"

35

type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFPortStateOptionsType">

<xs:restriction base="xs:string">

<xs:enumeration value="up"/>

<xs:enumeration value="down"/>

</xs:restriction>

</xs:simpleType>

<xs:complexTypename="OFPortCurrentFeatureListType">

<xs:sequence>

<xs:element name="rate"

type="OFPortRateType"/>

<xs:element name="auto-negotiate"

type="OFPortAutoNegotiateType"/>

<xs:element name="medium"

type="OFPortMediumType"/>

<xs:element name="pause"

type="OFPortPauseType" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFPortOtherFeatureListType">

<xs:sequence>

<xs:element name="rate"

type="OFPortRateType"

maxOccurs="unbounded"/>

<xs:element name="auto-negotiate"

type="OFPortAutoNegotiateType"/>

<xs:element name="medium"

type="OFPortMediumType"

maxOccurs="unbounded"/>

<xs:element name="pause"

type="OFPortPauseType"/>

</xs:sequence>

</xs:complexType>

7.6.3 XML Example

<port>

<resource-id>Port214748364</resource-id>

<number>214748364</number>

<name>name0</name>

<current-rate>10000</current-rate>

<max-rate>10000</max-rate>

<configuration>

<admin-state>up</admin-state>

<no-receive>false</no-receive>

<no-forward>false</no-forward>

<no-packet-in>false</no-packet-in>

</configuration>

<state>

<oper-state>up</oper-state>

36

<blocked>false</blocked>

<live>false</live>

</state>

<features>

<current>

...

</current>

<advertised>

...

</advertised>

<supported>

...

</supported>

<advertised-peer>

...

</advertised-peer>

</features>

</port>

7.6.4 Normative Constraints

An OpenFlow Port is identified by identifier <resource-id>within the context of the OpenFlow

Capable Switch and OpenFlow Logical Switches. Element<resource-id> is inherited from

superclass OpenFlow Resource.

Element <number>identifies the OpenFlow Port to OpenFlow Controllers. If the OpenFlow Port

is associated with a OpenFlow Logical Switch, <number>MUST be unique within the context of

the OpenFlow Logical Switch.

Element <name> assists OpenFlow Controllers in identifying OpenFlow Ports. <name> MAY be

defined. If the OpenFlow Port is associated with a OpenFlow Logical switch and <name> is

defined, <name>MUST be unique within the context of the OpenFlow Logical Switch.

Elements <current-rate> and <max-rate> indicate the current and maximum bit rate of the

port. Both values are to be provided in units of kilobit per second (kbps). Those elements are

only valid if the element <rate> in the current Port Features has a value of other.

Element <configuration>represents the expected behavior of the port based on explicit

configuration.

Element <configuration> contains four further elements: <admin-state>, <no-

receive>, <no-forward>, <no-packet-in>.

Element <admin-state> represents the configured link state of the port and MUST be set to

either up or down.

Element <no-receive> MUST be set to either true or false. A value of true means the

port is not receiving any traffic.

37

Element <no-forward>MUST be set to either true or false. A value of true means the

port is not forwarding any packets.

Element <no-packet-in> MUST be set to either true or false. A value of true means

port is not receiving any packets.

Element <state> contains three further elements: <oper-state>, <blocked>, <live>.

Element <oper-state> represents the reported link state of the port and MUST have a value

of either up or down.

Element <blocked> MUST have a value of either true or false. A value of true

meansthe port has been blocked from receiving or sending traffic.

Element <live> MUST have a value of either true or false .A value of true means the

portis active and sending/receiving packets.

An OpenFlow Port contains a list of OpenFlow Port Features in element <features>which

contains four sub-lists represented by elements <current>, <advertised>,

<supported>,<advertised-peer>.These four lists MUST contain the features associated

with the OpenFlow Port. The specific semantics of feature membership in each of these four

sub-lists are defined in the OpenFlow protocol.

The following elements of the OpenFlow Port can bemodified by a NETCONF edit-config

request or retrieved by a NETCONF get-config request: <resource-id>, <number>,

<name>, <admin-state>, <no-receive>, <no-forward>, <no-packet-in>.

7.6.5 YANG Specification

grouping openflow-port-resource-grouping {

description "This grouping specifies all properties of a port

resource.";

leaf resource-id {

type inet:uri;

description "A unique but locally arbitrary identifier that

identifies a port and is persistent across reboots of the

system.";

}

leaf number {

type uint64;

config false;

mandatory true;

description "An unique but locally arbitrary number that

identifies a port and is persistent across reboots of the

system.";

}

leaf name {

type string {

length "1..16";

}

config false;

description "Textual port name to ease identification of the

38

port at the switch.";

}

leaf current-rate {

when "../features/current/rate='other'" {

description "This element is only allowed if the element rate

of the current features has value 'other'.";

}

type uint32;

units "kbit/s";

config false;

description "The current rate in kilobit/second if the current

rate selector has value 'other'.";

}

leaf max-rate {

when "../features/current/rate='other'" {

description "This element is only allowed if the element rate

of the current features has value 'other'.";

}

type uint32;

units "kbit/s";

config false;

description "The maximum rate in kilobit/second if the current

rate selector has value 'other'.";

}

container configuration {

leaf admin-state {

type up-down-state-type;

default up;

description "The administrative state of the port.";

}

leaf no-receive {

type boolean;

default false;

description "Specifies if receiving packets is not enabled on

the port.";

}

leaf no-forward {

type boolean;

default false;

description "Specifies if forwarding packets is not enabled on

that port.";

}

leaf no-packet-in {

type boolean;

default false;

description "Specifies if sending packet-in messages for

incoming packets is not enabled on that port.";

}

}

container state {

config false;

leaf oper-state {

type up-down-state-type;

mandatory true;

description "The operational state of the port.";

}

leaf blocked {

39

type boolean;

mandatory true;

description "tbd";

}

leaf live {

type boolean;

mandatory true;

description "tbd";

}

}

container features {

container current {

uses openflow-port-current-features-grouping;

config false;

description "The features (rates, duplex, etc.) of the port

that are currently in use.";

}

container advertised {

uses openflow-port-other-features-grouping;

description "The features (rates, duplex, etc.) of the port

that are advertised to the peer port.";

}

container supported {

uses openflow-port-other-features-grouping;

config false;

description "The features (rates, duplex, etc.) of the port

that are supported on the port.";

}

container advertised-peer {

uses openflow-port-other-features-grouping;

config false;

description "The features (rates, duplex, etc.) that are

currently advertised by the peer port.";

}

}

}

7.7 OpenFlow Port Feature
OpenFlow Port Features includePort Rate, Port Medium, Port Pause, and Port Auto-

Negotiate.The normative semantics of these features are described in the OpenFlow protocol

specification.

40

7.7.1 UML Diagram

Figure 10: Data Model Diagram for an OpenFlow Port Feature

7.7.2 XML Schema

<xs:simpleType name="OFPortRateType">

<xs:restriction base="xs:string">

<xs:enumeration value="10Mb-HD"/>

<xs:enumeration value="10Mb-FD"/>

<xs:enumeration value="100Mb-HD"/>

<xs:enumeration value="100Mb-FD"/>

<xs:enumeration value="1Gb-HD"/>

<xs:enumeration value="1Gb-FD"/>

<xs:enumeration value="1 Tb"/>

<xs:enumeration value="Other"/>

</xs:restriction>

</xs:simpleType>

OpenFlow Port Rate

Value: Enum

{10 Mb,

 100 Mb,

 1 Gb,

 10 Gb,

 40 Gb,

 1000 Db,

 1 Tb,

 Other}

Value-Other: Integer

OpenFlow Port Duplex

Value: Enum

{Half,

 Full}

OpenFlow Port Medium

Value: Enum

{Copper,

 Fiber}

OpenFlow Port Pause

Value: Enum

{Symmetric,

 Asymmetric}

OpenFlow Port Auto-Negotiate

Value: Enum

{Enabled,

 Disabled}

OpenFlow Port

Feature

41

<xs:simpleType name="OFPortAutoNegotiateType">

<xs:restriction base="xs:string">

<xs:enumeration value="enabled"/>

<xs:enumeration value="disabled"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="OFPortMediumType">

<xs:restriction base="xs:string">

<xs:enumeration value="copper"/>

<xs:enumeration value="fiber"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="OFPortPauseType">

<xs:restriction base="xs:string">

<xs:enumeration value="unsupported"/>

<xs:enumeration value="symmetric"/>

<xs:enumeration value="asymmetric"/>

</xs:restriction>

</xs:simpleType>

7.7.3 XML Example

<rate>10Mb-FD</rate>

<auto-negotiate>enabled</auto-negotiate>

<medium>copper</medium>

<pause>symmetric</pause>

7.7.4 Normative Constraints

The OpenFlow Port has several attributes configurable via OF-CONFIG protocol. The normative

semantics of these attributes are described in the OpenFlow protocol.

Element <rate>MUST indicate a valid forwarding rate. The current Port Feature set MUST

contain this element exactly once. The other Port Feature sets MAY contain this element more

than once. If this element appears more than once in a Port Feature set than the value MUST

be unique within the Port Feature set.

Element <auto-negotiate>MUST indicate an administrative state of the forwarding rate

auto-negotiation protocol.

Element <medium>MUST indicate a valid physical medium. The current Port Feature set MUST

contain this element exactly once. The other Port Feature sets MAY contain this element more

than once. If this element appears more than once in a Port Feature set than the value MUST

be unique within the Port Feature set.

Element <pause>MUST indicate the flavor of the pause function by indicating either

asymmetric or asymmetric.

42

The following elements in the advertised Port Feature set can bemodified by a NETCONF

edit-config request or retrieved by a NETCONF get-config request: <rate>, <auto-

negotiate>, <medium>, <pause>.

7.7.5 YANG Specification

typedef rate-type {

type enumeration {

enum 10Mb-HD;

enum 10Mb-FD;

enum 100Mb-HD;

enum 100Mb-FD;

enum 1Gb-HD;

enum 1Gb-FD;

enum 10Gb;

enum 40Gb;

enum 100Gb;

enum 1Tb;

enum other;

}

description "Type to specify the rate of a port including the duplex

transmission feature. Possible rates are 10Mb, 100Mb, 1Gb, 10Gb,

40Gb, 100Gb, 1Tb or other. Rates of 10Mb, 100Mb and 1Gb can support

half or full duplex transmission.";

}

grouping openflow-port-current-features-grouping {

description "The current features of a port.";

leaf rate {

type rate-type;

mandatory true;

description "The transmission rate that is currently used.";

}

leaf auto-negotiate {

type boolean;

mandatory true;

description "Specifies if auto-negotiation of transmission

parameters was used for the port.";

}

leaf medium {

type enumeration {

enum copper;

enum fiber;

}

mandatory true;

description "The transmission medium used by the port.";

}

leaf pause {

type enumeration {

enum unsupported;

enum symmetric;

enum asymmetric;

}

mandatory true;

description "Specifies if pausing of transmission is supported at

all and if yes if it is asymmetric or symmetric.";

43

}

}

grouping openflow-port-other-features-grouping {

description "The features of a port that are supported or

advertised.";

leaf-list rate {

type rate-type;

min-elements 1;

description "The transmission rate that is supported or

advertised. Multiple transmissions rates are allowed.";

}

leaf auto-negotiate {

type boolean;

mandatory true;

description "Specifies if auto-negotiation of transmission

parameters is enabled for the port.";

}

leaf-list medium {

type enumeration {

enum copper;

enum fiber;

}

min-elements 1;

description "The transmission medium used by the port. Multiple

media are allowed.";

}

leaf pause {

type enumeration {

enum unsupported;

enum symmetric;

enum asymmetric;

}

description "Specifies if pausing of transmission is supported

at all and if yes if it is asymmetric or symmetric.";

}

}

7.8 OpenFlow Queue
The OpenFlow Queue is an instance of an OpenFlow resource. It contains list of queue

properties. The OpenFlow Queue is a logical context which represents a queue as described in

the OpenFlow protocol specification.

44

7.8.1 UML Diagram

Figure 11: Data Model Diagram for an OpenFlow Queue

7.8.2 XML Schema

<xs:complexType name="OFQueueType">

<xs:complexContent>

<xs:extension base="OFResourceType">

<xs:sequence maxOccurs="1" minOccurs="1">

<xs:element name="id" type="OFConfigID"/>

<xs:element name="port"

type="OFConfigID"/>

<xs:element name="properties"

type="OFQueuePropertiesType"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OFQueuePropertiesType">

<xs:sequence>

<xs:element name="min-rate"

type="OFQueueMinRateType"/>

OpenFlow

Queue

Property

OpenFlow Queue

Min-Rate

Value: Integer

{Percentage 0.0 to 100.0

to 1/10 of a percent}

OpenFlow Queue

Queue ID: Integer

Port: Integer

*

OpenFlow Queue

Experimenter

Value: String

OpenFlow Queue

Max-Rate

Value: Integer

{Percentage 0.0 to 100.0

to 1/10 of a percent}

45

<xs:element name="max-rate"

type="OFQueueMaxRateType"/>

<xs:element name="experimenter"

type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFQueueMinRateType">

<xs:restriction base="xs:integer"/>

</xs:simpleType>

<xs:simpleType name="OFQueueMaxRateType">

<xs:restriction base="xs:unsignedLong"/>

</xs:simpleType>

7.8.3 XML Example

<queue>

<resource-id>Queue2</resource-id>

<id>2</id>

<port>4</port>

<properties>

<min-rate>10</min-rate>

<max-rate>500</max-rate>

<experimenter>123498</experimenter>

<experimenter>708</experimenter>

</properties>

</queue>

7.8.4 Normative Constraints

An OpenFlow Queue is identified by identifier <resource-id>within the context of the

OpenFlow Capable Switch and OpenFlow Logical Switches. Element <resource-id> is

inherited from superclass OpenFlow Resource.

Element <id> identifies the OpenFlow Queue to OpenFlow Controllers. If the OpenFlow Queue

is associated with a OpenFlow Logical Switch, <id>MUST be unique within the context of the

OpenFlow Logical Switch.

Element <port> associates an OpenFlow Queue with an OpenFlow Port. If the OpenFlow

Queue is associated with an OpenFlow Logical SwitchS and <port> is non-empty, <port>

MUSTbe set to the value of the <resource-id> of an OpenFlow Port which is associated with

the OpenFlow Logical Switch S.

Element <properties> indicates the properties associated with the OpenFlow Queue as

defined in the OpenFlow protocol specification. If the OpenFlow Queue is associated with an

OpenFlow Logical Switch, <properties>MUST include the properties associated to the

OpenFlow Queue. Element <properties> contains three possible elements: <min-rate>,

<max-rate>, <experimenter>.

46

Element <min-rate>MUST indicate the minimum rate of the queue by percentage as an

integer representing one tenth of one percent.

Element <max-rate> MUST indicate the minimum rate of the queue by percentage as an

integer representing one tenth of one percent.

Element <experimenter>MAY indicate values as defined in the OpenFlow protocol

specification.

The following elements of the OpenFlow Port can bemodified by a NETCONF edit-config

request or retrieved by a NETCONF get-config request: <resource-id>, <id>,

<port>, <min-rate>, <max-rate>, <experimenter>.

7.8.5 YANG Specification

typedef tenth-of-a-percent {

type uint16 {

range "0..1000";

}

units "1/10 of a percent";

description "This type defines a value in tenth of a percent.";

}

grouping openflow-queue-resource-grouping {

description "This grouping specifies all properties of a queue

resource.";

leaf resource-id {

type inet:uri;

description "An unique but locally arbitrary identifier that

identifies a queue and is persistent across reboots of the

system.";

}

leaf id {

type uint64;

mandatory true;

description "An unique but locally arbitrary number that

identifies a queue and is persistent across reboots of the

system.";

}

leaf port {

type leafref {

path "/capable-switch/resources/port/resource-id";

}

description "Reference to port resources in the Capable Switch.";

}

container properties {

description "The queue properties currently configured.";

leaf min-rate {

type tenth-of-a-percent;

description "The minimal rate that is reserved for this queue

in 1/10 of a percent of the actual rate. If not present a

min-rate is not set.";

}

leaf max-rate {

type tenth-of-a-percent;

47

description "The maximum rate that is reserved for this queue

in 1/10 of a percent of the actual rate. If not present the

max-rate is not set.";

}

leaf-list experimenter {

type uint32;

description "A list of experimenter identifiers of queue

properties used.";

}

}

}

48

8 Binding to NETCONF

The OF-CONFIG1.0 protocol provides a standard way to modify basic OpenFlow configuration

for the operation of an OpenFlow logical switch within the context of an OpenFlow Capable

Switch. At the same time, it provides vendors the ability to extend and innovate by providing

new and imporved configuration capabilities. To achieve these goals, OF-CONFIG1.0 requires

that devices supporting OF-CONFIG1.0 MUST implement NETCONF protocol (4) as the

transport. This in turn implies as specified by NETCONF specification that OpenFlow Capable

Switches supporting OF-CONFIG1.0 must implement SSH as a transport protocol. In addition,

the OpenFlow Capable Switches implementing OF-CONFIG1.0 protocol may implement

additional transports such as Web Services-Management or something else. Future versions of

OF-CONFIG may specify binding to these additional transports.

NETCONF is a stable protocol that has been standardized for several years now. It is widely

available on various platforms and achieves the needs for OF-CONFIG1.0. NETCONF defines a

set of operations on top of a messaging layer (RPC). Below diagram shows the various layers of

NETCONF protocol.

Figure 12 NETCONF Layers and Examples

The OpenFlow capable switches MUST support the schema as defined in this specification as

the content layer in the above diagram. The schema currently covers basic configuration

elements and will be extended in next versions.

The NETCONF protocol meets the OF-CONFIG 1.0 requirements for communication between

an OpenFlow Configuration Point and an OpenFlow switch as listed in Section 6.3. In addition, if

Content

Operations

RPC

Transport

Protocol

<capable-switch>…</capable-switch>

<get-config>,<set-config>,<notification>

<rpc>,<rpc-reply>

SSH, TLS, BEEP, SOAP

Layer Example

49

future needs of OF-CONFIG are not met by NETCONF protocol, NETCONF is extensible which

will allow OF-CONFIG to extend NETCONF for its purpose.

1. It supports TLS as communication transport protocol (directly or with SOAP or BEEP in

between) that can be used for providing integrity, privacy, and mutual authentication.

2. All specified transport mappings for NETCONF use TLS or TCP as underlying transport

protocol and thus provides reliable transport.

3. The common way to establish a connection with NETCONF is from the Configuration

Point (configuration point) to the managed device (switch).

4. The NETCONF standard support reversed configuration setup only if BEEP is used as

transport protocol.

5. I supports partial switch configuration to the most fine-grain level.

6. It supports full switch configuration with a single operation.

7. It supports setting of configuration data.

8. It supports the retrieval of configuration data.

9. It support the retrieval of (non-configuration) status data.

10. It supports creation, modification and deletion of configuration information.

11. It supports returning success codes after completing a configuration operation.

12. It supports support reporting error codes for partially or completely failed configuration

requests.

13. It supports sending configuration requests independent of the completion of previous

requests. Requests may be queued or processed concurrently at a switch. Each request

has a request ID. Success or failure indications can be send independently of other

requests individually for each request ID.

14. It supports transaction capabilities including rollback per operation.

15. With its extension defined in RFC 5277 it supports asynchronous notifications from the

managed device (switch) to the Configuration Point (configuration point).

16. It is extensible. New operations can bee added and its support can be checked by

capability retrieval.

17. It supports reporting its capabilities.

50

9 Appendix A: XML Schema
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

targetNamespace="urn:onf:params:xml:ns:onf:of12:config"

xmlns="urn:onf:params:xml:ns:onf:of12:config"

xmlns:of12-config="urn:onf:params:xml:ns:onf:of12:config"

xmlns:inet="urn:ietf:params:xml:ns:yang:ietf-inet-types">

<xs:import namespace="urn:ietf:params:xml:ns:yang:ietf-inet-types"

schemaLocation="ietf-inet-types.xsd"/>

<xs:element name="capable-switch" type="OFCapableSwitchType">

<xs:annotation>

<xs:documentation>The OpenFlow Capable Switch and its configuration

points, logical switches and resources available to logical

switches.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:simpleType name="OFConfigID">

<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:complexType name="OFCapableSwitchType">

<xs:annotation>

<xs:documentation>Representation of an OpenFlow Capable

Switch.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="id" type="OFConfigID">

<xs:annotation>

<xs:documentation>An unique but locally arbitrary identifier that

identifies a Capable Switch towards management systems and that

is persistent across reboots of the system.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="configuration-points"

type="OFConfigurationPointListType">

<xs:annotation>

<xs:documentation>The list of all configuration points known to the

OpenFlow Capable Switch that may manage it using OF-CONFIG.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="resources"

type="OFCapableSwitchResourceListType">

<xs:annotation>

<xs:documentation>This element contains lists of all resources of

the OpenFlow Capable Switch that can be used by OpenFlow Logical

Switches.

</xs:documentation>

</xs:annotation>

51

</xs:element>

<xs:element name="logical-switches"

type="OFLogicalSwitchListType">

<xs:annotation>

<xs:documentation>List of all OpenFlow Logical Switches available

on the OpenFlow Capable Switch.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFConfigurationPointListType">

<xs:annotation>

<xs:documentation/>

</xs:annotation>

<xs:sequence>

<xs:element name="configuration-point"

type="OFConfigurationPointType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFCapableSwitchResourceListType">

<xs:sequence>

<xs:element name="port" type="OFPortType"

maxOccurs="unbounded"/>

<xs:element name="queue" type="OFQueueType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFLogicalSwitchListType">

<xs:sequence>

<xs:element name="logical-switch"

type="OFLogicalSwitchType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFConfigurationPointType">

<xs:annotation>

<xs:documentation>Representation of an OpenFlow Configuration

Point.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="id" type="OFConfigID">

<xs:annotation>

<xs:documentation>An identifier that identifies a Configuration

Point of the OpenFlow Capable Switch.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="uri" type="inet:uri">

<xs:annotation>

<xs:documentation>A locator of the Configuration Point. This

element MAY contain a locator of the configuration point

including, for example, an IP address and a port number.

52

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="protocol"

type="OFConfigurationPointProtocolType">

<xs:annotation>

<xs:documentation>The transport protocol that the Configuration

Point uses when communicating via NETCONF with the OpenFlow

Capable Switch.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFConfigurationPointProtocolType">

<xs:annotation>

<xs:documentation>The mappings of NETCONF to different transport

protocols are defined in RFC 6242 for SSH, RFC 4743 for SOAP, RFC

4744 for BEEP, and RFC 5539 for TLS.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="ssh"/>

<xs:enumeration value="soap"/>

<xs:enumeration value="tls"/>

<xs:enumeration value="beep"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFLogicalSwitchType">

<xs:annotation>

<xs:documentation>The representation of an OpenFlow Logical Switch

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="id" type="OFConfigID">

<xs:annotation>

<xs:documentation>An unique but locally arbitrary identifier that

identifies an OpenFlow Logical Switch within an OpenFlow Capable

Switch. It is persistent across reboots of the system.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="datapath-id" type="OFConfigID">

<xs:annotation>

<xs:documentation>A unique identifier that identifiers an OpenFlow

Logical Switch within the context of an OpenFlow Controller.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="enabled" type="xs:boolean"/>

<xs:element name="lost-connection-behavior"

type="OFLogicalSwitchLostConnnectionBehavior"/>

<xs:element name="controllers" type="OFControllerListType">

<xs:annotation>

<xs:documentation>The list of controllers that are assigned to the

53

OpenFlow Logical Switch.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="resources"

type="OFLogicalSwitchResourceListType">

<xs:annotation>

<xs:documentation>The list of references to all resources of the

OpenFlow Capable Switch that the OpenFlow Logical Switch has

exclusive access to.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFLogicalSwitchLostConnnectionBehavior">

<xs:restriction base="xs:string">

<xs:enumeration value="failSecureMode"/>

<xs:enumeration value="failStandaloneMode"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFControllerListType">

<xs:sequence>

<xs:element name="controller"

type="OFControllerType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFLogicalSwitchResourceListType">

<xs:sequence>

<xs:element name="port" type="OFConfigID" maxOccurs="unbounded"/>

<xs:element name="queue" type="OFConfigID" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFControllerType">

<xs:annotation>

<xs:documentation>Representation of an OpenFlow Controller

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="id" type="OFConfigID">

<xs:annotation>

<xs:documentation>An unique but locally arbitrary identifier that

identifies an OpenFlow Controller within the context of an

OpenFlow Capable Switch. It is persistent across reboots of the

system.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="role" type="OFControllerRoleType">

<xs:annotation>

<xs:documentation>The predefined role of the controller.

</xs:documentation>

54

</xs:annotation>

</xs:element>

<xs:element name="ip-address" type="inet:ip-prefix">

<xs:annotation>

<xs:documentation>The remote IP of the controller to connect

to.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="port" type="inet:port-number">

<xs:annotation>

<xs:documentation>The port number the controller listens on.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="local-ip-address" type="inet:ip-address">

<xs:annotation>

<xs:documentation>This specifies the source IP for packets sent to

this controller and overrides the default IP used.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="local-port" type="inet:port-number">

<xs:annotation>

<xs:documentation>The port number the controller listens on. If 0

the port is chosen dynamically.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="protocol" type="OFControllerProtocolType">

<xs:annotation>

<xs:documentation>The protocol used for connecting to the

controller. Both sides must support the chosen protocol for a

successful establishment of a connection.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="state" type="OFControllerOpenFlowStateType">

<xs:annotation>

<xs:documentation>This element represents the state of the OpenFlow

protocol connection to the controller.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFControllerRoleType">

<xs:restriction base="xs:string">

<xs:enumeration value="master"/>

<xs:enumeration value="slave"/>

<xs:enumeration value="equal"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="OFControllerProtocolType">

<xs:restriction base="xs:string">

<xs:enumeration value="tcp"/>

55

<xs:enumeration value="tls"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFControllerOpenFlowStateType">

<xs:sequence>

<xs:element name="connection-state"

type="OFControllerConnectionStateType">

<xs:annotation>

<xs:documentation>This element represents the run-time state of the

OpenFlow connection to the Contoller.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="current-version" type="OFOpenFlowVersionType">

<xs:annotation>

<xs:documentation>This element denotes the version of OpenFlow that

Contoller is currently communicating with. It is only relevant

when the connection-state element is set to "up".

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="supported-versions"

type="OFOpenFlowSupportedVersionsType">

<xs:annotation>

<xs:documentation>This element denotes all of the versions of the

OpenFlow protocol that the contoller supports.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFControllerConnectionStateType">

<xs:restriction base="xs:string">

<xs:enumeration value="up"/>

<xs:enumeration value="down"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFOpenFlowSupportedVersionsType">

<xs:sequence>

<xs:element name="version"

type="OFOpenFlowVersionType"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFOpenFlowVersionType">

<xs:restriction base="xs:string">

<xs:enumeration value="1.2"/>

<xs:enumeration value="1.1"/>

<xs:enumeration value="1.0"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFResourceType">

56

<xs:annotation>

<xs:documentation>A Base Class for OpenFlow Resources.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="resource-id" type="OFConfigID">

<xs:annotation>

<xs:documentation>An unique but locally arbitrary identifier that

identifies a resource within the context of and OpenFlow Capable

Switch and is persistent across reboots of the system.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFPortType">

<xs:complexContent>

<xs:extension base="OFResourceType">

<xs:sequence>

<xs:element name="number" type="xs:unsignedInt"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="current-rate" type="xs:unsignedLong"/>

<xs:element name="max-rate" type="xs:unsignedLong"/>

<xs:element name="configuration" type="OFPortConfigurationType"/>

<xs:element name="state" type="OFPortStateType"/>

<xs:element name="features" type="OFPortFeatureMasterList"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OFPortFeatureMasterList">

<xs:sequence>

<xs:element name="current" type="OFPortCurrentFeatureListType"/>

<xs:element name="advertised" type="OFPortOtherFeatureListType"/>

<xs:element name="supported" type="OFPortOtherFeatureListType"/>

<xs:element name="advertised-peer"

type="OFPortOtherFeatureListType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFPortConfigurationType">

<xs:sequence>

<xs:element name="admin-state" type="OFPortStateOptionsType"/>

<xs:element name="no-receive" type="xs:boolean"/>

<xs:element name="no-forward" type="xs:boolean"/>

<xs:element name="no-packet-in" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFPortStateType">

<xs:sequence>

<xs:element name="oper-state" type="OFPortStateOptionsType"/>

<xs:element name="blocked" type="xs:boolean"/>

<xs:element name="live" type="xs:boolean"/>

</xs:sequence>

57

</xs:complexType>

<xs:simpleType name="OFPortStateOptionsType">

<xs:restriction base="xs:string">

<xs:enumeration value="up"/>

<xs:enumeration value="down"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFPortCurrentFeatureListType">

<xs:sequence>

<xs:element name="rate" type="OFPortRateType"/>

<xs:element name="auto-negotiate" type="OFPortAutoNegotiateType"/>

<xs:element name="medium" type="OFPortMediumType"/>

<xs:element name="pause" type="OFPortPauseType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="OFPortOtherFeatureListType">

<xs:sequence>

<xs:element name="rate" type="OFPortRateType"

maxOccurs="unbounded"/>

<xs:element name="auto-negotiate" type="OFPortAutoNegotiateType"/>

<xs:element name="medium" type="OFPortMediumType"

maxOccurs="unbounded"/>

<xs:element name="pause" type="OFPortPauseType"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFPortRateType">

<xs:restriction base="xs:string">

<xs:enumeration value="10Mb-HD"/>

<xs:enumeration value="10Mb-FD"/>

<xs:enumeration value="100Mb-HD"/>

<xs:enumeration value="100Mb-FD"/>

<xs:enumeration value="1Gb-HD"/>

<xs:enumeration value="1Gb-FD"/>

<xs:enumeration value="1 Tb"/>

<xs:enumeration value="Other"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="OFPortAutoNegotiateType">

<xs:restriction base="xs:string">

<xs:enumeration value="enabled"/>

<xs:enumeration value="disabled"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="OFPortMediumType">

<xs:restriction base="xs:string">

<xs:enumeration value="copper"/>

<xs:enumeration value="fiber"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="OFPortPauseType">

58

<xs:restriction base="xs:string">

<xs:enumeration value="unsupported"/>

<xs:enumeration value="symmetric"/>

<xs:enumeration value="asymmetric"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="OFQueueType">

<xs:complexContent>

<xs:extension base="OFResourceType">

<xs:sequence maxOccurs="1" minOccurs="1">

<xs:element name="id" type="OFConfigID">

<xs:annotation>

<xs:documentation>An unique but locally arbitrary number that

identifies a queue within the context of and OpenFlow Logical

Switch and is persistent across reboots of the system.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="port" type="OFConfigID">

<xs:annotation>

<xs:documentation>Port in the context of the same Logical

Switch which this Queue is associated with.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="properties" type="OFQueuePropertiesType">

<xs:annotation>

<xs:documentation>Properties of the Queue.

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OFQueuePropertiesType">

<xs:sequence>

<xs:element name="min-rate" type="OFQueueMinRateType"

maxOccurs="1">

<xs:annotation>

<xs:documentation>The minimal rate that is reserved for this queue

in 1/10 of a percent of the actual rate.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="max-rate" type="OFQueueMaxRateType">

<xs:annotation>

<xs:documentation>The maximum rate that is reserved for this queue

in 1/10 of a percent of the actual rate.

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element maxOccurs="unbounded" name="experimenter"

type="xs:unsignedLong">

<xs:annotation>

59

<xs:documentation>Experimental Properties</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OFQueueMinRateType">

<xs:restriction base="xs:integer"/>

</xs:simpleType>

<xs:simpleType name="OFQueueMaxRateType">

<xs:restriction base="xs:integer"/>

</xs:simpleType>

</xs:schema>

60

10 Appendix B: YANG Specification
module onf-config-10 {

namespace "urn:onf:of12:config:yang";

prefix of12-config;

import ietf-inet-types { prefix inet; }

organization

"ONF Config Management Group";

contact

"tbd";

description

"tbd";

revision 2011-12-07 {

description "First Version";

reference "tbd";

}

/***

* Features

***/

/***

* Type definitions

***/

typedef openflow-version {

type enumeration {

enum "1.0";

enum "1.1";

enum "1.2";

}

description "This enumeration contains the all OpenFlow

versions released so far.";

}

typedef datapath-id-type {

type string {

pattern

'[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){7}';

}

description "The datapath-id type represents an OpenFlow

datapath identifier.";

}

typedef tenth-of-a-percent {

type uint16 {

range "0..1000";

}

units "1/10 of a percent";

description "This type defines a value in tenth of a

61

percent.";

}

typedef up-down-state-type {

type enumeration {

enum up;

enum down;

}

description "Type to specify state information for a port or a

connection.";

}

typedef rate-type {

type enumeration {

enum 10Mb-HD;

enum 10Mb-FD;

enum 100Mb-HD;

enum 100Mb-FD;

enum 1Gb-HD;

enum 1Gb-FD;

enum 10Gb;

enum 40Gb;

enum 100Gb;

enum 1Tb;

enum other;

}

description "Type to specify the rate of a port including the

duplex transmission feature. Possible rates are 10Mb, 100Mb,

1Gb, 10Gb, 40Gb, 100Gb, 1Tb or other. Rates of 10Mb, 100Mb and

1Gb can support half or full duplex transmission.";

}

/***

* Groupings

***/

grouping openflow-configuration-point-grouping {

description "Representation of an OpenFlow Configuration Point.";

leaf id {

type inet:uri;

description "An identifier that identifies a Configuration

Point of the OpenFlow Capable Switch.";

}

leaf uri {

type inet:uri;

description "A locator of the Configuration Point. This

element MAY contain a locator of the Configuration Point

including, for example, anIP address and a port number.";

}

leaf protocol {

type enumeration {

enum "ssh";

enum "soap";

enum "tls";

enum "beep";

}

default "ssh";

62

description "The transport protocol that the Configuration

Point uses when communicating via NETCONF with the OpenFlow

Capable Switch.";

reference "The mappings of NETCONF to different transport

protocols are defined in RFC 6242 for SSH, RFC 4743 for

SOAP, RFC 4744 for BEEP, and RFC 5539 for TLS";

}

}

grouping openflow-logical-switch-grouping {

description "This grouping specifies all properties of an

OpenFlow Logical Switch.";

leaf id {

type inet:uri;

mandatory true;

description "An unique but locally arbitrary identifier that

identifies a Logical Switch within a Capable Switch and is

persistent across reboots of the system.";

}

leaf datapath-id {

type datapath-id-type;

mandatory true;

description "The datapath identifier of the Logical Switch

that uniquely identifies this Logical Switch in the

controller.";

}

leaf enabled {

type boolean;

mandatory true;

description "Specifies if the Logical Switch is enabled.";

}

container controllers {

description "The list of controllers for this Logical

switch.";

list controller {

key "id";

unique "id";

description "The list of controllers that are assigned to the

OpenFlow Logical Switch.";

uses openflow-controller-grouping;

}

}

container resources {

description "The following lists reference to all resources of

the OpenFlow Capable Switch that the OpenFlow Logical Switch

has exclusive access to.";

leaf-list port {

type leafref {

path "/capable-switch/resources/port/resource-id";

}

description "The list references to all port resources of the

OpenFlow Capable Switch that the OpenFlow Logical Switch has

exclusive access to.";

}

leaf-list queue {

type leafref {

path "/capable-switch/resources/queue/resource-id";

63

}

description "The list references to all queue resources of the

OpenFlow Capable Switch that the OpenFlow Logical Switch has

exclusive access to.";

}

}

}

grouping openflow-controller-grouping {

description "This grouping specifies all properties of an

OpenFlow Logical Switch Controller.";

leaf id {

type inet:uri;

mandatory true;

description "An unique but locally arbitrary identifier that

identifies a controller within a OpenFlow Logical Switch and

is persistent across reboots of the system.";

}

leaf role {

type enumeration {

enum master;

enum slave;

enum equal;

}

default equal;

description "The predefined role of the controller.";

}

leaf ip-address {

type inet:ip-address;

mandatory true;

description "The IP address of the controller to connect to.";

}

leaf port {

type inet:port-number;

default 6633;

description "The port number at the controller to connect

to.";

}

leaf local-ip-address {

type inet:ip-address;

description "This specifies the source IP for packets sent to

this controller and overrides the default IP used.";

}

leaf local-port {

type inet:port-number;

default 0;

description "The port number the switch listens on. If 0 the

port is chosen dynamically.";

}

leaf protocol {

type enumeration {

enum "tcp";

enum "tls";

}

default "tcp";

description "The protocol used for connecting to the

controller.";

64

}

container state {

description "This container holds connection state information

that indicate if the Logical Switch is connected, what

versions are supported, and which one is used.";

leaf connection-state {

type up-down-state-type;

description "This object indicates if the Logical Switch is

connected to the controller.";

}

leaf current-version {

type openflow-version;

description "This object contains the current OpenFlow version

used between Logical Switch and Controller.";

}

leaf-list supported-versions {

type openflow-version;

description "This list of objects contains all the OpenFlow

versions supported the controller.";

}

}

}

grouping openflow-port-resource-grouping {

description "This grouping specifies all properties of a port

resource.";

leaf resource-id {

type inet:uri;

description "A unique but locally arbitrary identifier that

identifies a port and is persistent across reboots of the

system.";

}

leaf number {

type uint64;

config false;

mandatory true;

description "An unique but locally arbitrary number that

identifies a port and is persistent across reboots of the

system.";

}

leaf name {

type string {

length "1..16";

}

config false;

description "Textual port name to ease identification of the

port at the switch.";

}

leaf current-rate {

when "../features/current/rate='other'" {

description "This element is only allowed if the element rate

of the current features has value 'other'.";

}

type uint32;

units "kbit/s";

config false;

description "The current rate in kilobit/second if the current

65

rate selector has value 'other'.";

}

leaf max-rate {

when "../features/current/rate='other'" {

description "This element is only allowed if the element rate

of the current features has value 'other'.";

}

type uint32;

units "kbit/s";

config false;

description "The maximum rate in kilobit/second if the current

rate selector has value 'other'.";

}

container configuration {

leaf admin-state {

type up-down-state-type;

default up;

description "The administrative state of the port.";

}

leaf no-receive {

type boolean;

default false;

description "Specifies if receiving packets is not

enabled on the port.";

}

leaf no-forward {

type boolean;

default false;

description "Specifies if forwarding packets is not

enabled on that port.";

}

leaf no-packet-in {

type boolean;

default false;

description "Specifies if sending packet-in messages for coming

packets is not enabled on that port.";

}

}

container state {

config false;

leaf oper-state {

type up-down-state-type;

mandatory true;

description "The operational state of the port.";

}

leaf blocked {

type boolean;

mandatory true;

description "tbd";

}

leaf live {

type boolean;

mandatory true;

description "tbd";

}

}

container features {

66

container current {

uses openflow-port-current-features-grouping;

config false;

description "The features (rates, duplex, etc.) of the port

that are currently in use.";

}

container advertised {

uses openflow-port-other-features-grouping;

description "The features (rates, duplex, etc.) of the port

that are advertised to the peer port.";

}

container supported {

uses openflow-port-other-features-grouping;

config false;

description "The features (rates, duplex, etc.) of the port

that are supported on the port.";

}

container advertised-peer {

uses openflow-port-other-features-grouping;

config false;

description "The features (rates, duplex, etc.) that are

currently advertised by the peer port.";

}

}

}

grouping openflow-queue-resource-grouping {

description "This grouping specifies all properties of a queue

resource.";

leaf resource-id {

type inet:uri;

description "An unique but locally arbitrary identifier that

identifies a queue and is persistent across reboots of the

system.";

}

leaf id {

type uint64;

mandatory true;

description "An unique but locally arbitrary number that

identifies a queue and is persistent across reboots of the

system.";

}

leaf port {

type leafref {

path "/capable-switch/resources/port/resource-id";

}

description "Reference to port resources in the Capable

Switch.";

}

container properties {

description "The queue properties currently configured.";

leaf min-rate {

type tenth-of-a-percent;

description "The minimal rate that is reserved for this queue

in 1/10 of a percent of the actual rate. If not present a min-

rate is not set.";

}

67

leaf max-rate {

type tenth-of-a-percent;

description "The maximum rate that is reserved for this queue

in 1/10 of a percent of the actual rate. If not present the

max-rate is not set.";

}

leaf-list experimenter {

type uint32;

description "A list of experimenter identifiers of queue

properties used.";

}

}

}

grouping openflow-port-current-features-grouping {

description "The current features of a port.";

leaf rate {

type rate-type;

mandatory true;

description "The transmission rate that is currently used.";

}

leaf auto-negotiate {

type boolean;

mandatory true;

description "Specifies if auto-negotiation of transmission

parameters was used for the port.";

}

leaf medium {

type enumeration {

enum copper;

enum fiber;

}

mandatory true;

description "The transmission medium used by the port.";

}

leaf pause {

type enumeration {

enum unsupported;

enum symmetric;

enum asymmetric;

}

mandatory true;

description "Specifies if pausing of transmission is supported

at all and if yes if it is asymmetric or symmetric.";

}

}

grouping openflow-port-other-features-grouping {

description "The features of a port that are supported or

advertised.";

leaf-list rate {

type rate-type;

min-elements 1;

description "The transmission rate that is supported or

advertised. Multiple transmissions rates are allowed.";

}

leaf auto-negotiate {

68

type boolean;

mandatory true;

description "Specifies if auto-negotiation of transmission

parameters is enabled for the port.";

}

leaf-list medium {

type enumeration {

enum copper;

enum fiber;

}

min-elements 1;

description "The transmission medium used by the port.

Multiple media are allowed.";

}

leaf pause {

type enumeration {

enum unsupported;

enum symmetric;

enum asymmetric;

}

description "Specifies if pausing of transmission is supported

at all and if yes if it is asymmetric or symmetric.";

}

}

/***

* Main container

***/

container capable-switch {

description "The OpenFlow Capable Switch containing logical

switches, and resources that can be assigned to logical

switches.";

leaf id {

type inet:uri;

mandatory true;

description "An unique but locally arbitrary identifier that

identifies a Capable Switch towards the management system

and is persistent across reboots of the system.";

}

container configuration-points {

list configuration-point {

key "id";

unique "id";

description "The list of all Configuration Points known to the

OpenFlow Capable Switch that may manage it using OF-CONFIG.";

uses openflow-configuration-point-grouping;

}

}

container resources {

description "A lists containing all resources of the OpenFlow

Capable Switch.";

list port {

must "features/current/rate != 'other' or " +

"(count(current-rate) = 1 and count(max-rate) = 1 and "

+

" current-rate > 0 and max-rate > 0)" {

69

error-message "current-rate and max-rate must be specified and

greater than 0 if rate equals 'other'";

description "current-rate and max-rate can only be present if

rate = 'other, see corresponding leaf descriptions. If rate

= 'other', then both leafs must be set to values greater

than zero.";

}

key "resource-id";

unique "resource-id";

description "The list contains all port resources of the

OpenFlow Capable Switch.";

uses openflow-port-resource-grouping;

}

list queue {

key "resource-id";

unique "resource-id";

description "The list contains all queue resources of the

OpenFlow Capable Switch.";

uses openflow-queue-resource-grouping;

}

}

container logical-switches {

description "This element contains all OpenFlow Logical

Switches on the OpenFlow Capable Switch.";

list switch {

key "id";

unique "id";

description "The list of all OpenFlow Logical Switches on the

OpenFlow Capable Switch.";

uses openflow-logical-switch-grouping;

}

}

}

}

70

11 Bibliography
1. OpenFlow Specification 1.2. Open Networking Foundation. 2011.

2. OpenFlow: enabling innovation in campus networks. McKeown, Nick, et al. 2008, ACM

SIGCOMM Computer Communication Review, pp. 69-74.

3. Key words for use in RFCs to Indicate Requirement Levels, Bradner, S. RFC 2119. IETF.

[Online] March 1997. http://www.ietf.org/rfc/rfc2119.txt.

4. Network Configuration Protocol (NETCONF), Enns, et al. RFC 6241. IETF. [Online] June

2011. http://tools.ietf.org/rfc/rfc6241.txt.

5. Using the NETCONF Protocol over the Blocks Extensible Exchange Protocol (BEEP), Lear,

E., Crozier, K., RFC 4744. IETF. [Online] December 2006. http://tools.ietf.org/rfc/rfc4744.txt.

6. Using the NETCONF Protocol over the Simple Object Access Protocol (SOAP), Goddard, T.,

RFC 4743. IETF. [Online] December 2006. http://tools.ietf.org/rfc/rfc4743.txt.

7. NETCONF over Transport Layer Security (TLS), Badra, M., May 2009. RFC 5539, IETF.

[Online] June 2011. http://tools.ietf.org/rfc/rfc5539.txt.

8. Using the NETCONF Protocol over Secure Shell (SSH), Wasserman, M., RFC 5539. IETF.

[Online] June 2011. http://tools.ietf.org/rfc/rfc6242.txt.

9. YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF),

Bjorklund, M., RFC 6020, IETF. [Online] October 2010. http://tools.ietf.org/rfc/rfc6020.txt.

71

12 Appendix C: Revision History

Version Date Notes

0.0.1 10/4/11 Initial outline and conversation starter

1.2v4R1 10/6/11 Revisions based on 10/6 phone conference

1.2v5R1 10/19/11 Revisions based on mailing-list

conversations

1.2V5R2 10/24/11 Revisions based on face-to-face meeting

on 10/20/11

1.2V5R3 11/2/11 Revisions based on 10/31 meeting

1.2V6R1 11/3/11 Revisions based on 11/3 meeting, and

merges 1.2V4R4-Deepak

1.2V7R1 11/6/11 Revisions based on 11/3 meeting and

implementation experience

1.2V7R3 11/7/11 Revisions based on 11/7 call

1.2.V8R1 11/9/11 Accepted changes from V7R4

1.2.V8R3 11/13/11 Added class descriptions and normative

constraints to data model

1.2V8R4 11/13/11 Removed all references to Meters, added

OpenFlow-State class to Controller,

updated Queues to be consistent with 1.2

1.2V10R1 11/14/11 Feature complete UML and XML Schema

and Normative Constraints

1.2V11R1 11/14/11 Accepted changes from Deepak

1.2V11R2 11/15/11 Modifications and corrections from Thomas

1.2V12R1 11/15/11 Corrections and accepted changes from

Thomas

1.2V12R2 11/20/11 Corrections, additional normative

constraints, submitted changes to

controllers by Juergen, updated

72

references

1.2V12R3 11/21/11 Accepted changes from V12R2 and

corrections from 11/21/11 call.

1.2V12R4 11/07/11 Revisions based on 12/5 phone conference

1.2V15R1 12/19/11 Updated todo list with some accepted

changes from 12/15 call

1.2V16R1 12/23/11 Updates based on 12/22/call

1.2V17R1 12/23/11 Feature Complete

10V18R1 01/06/12 Format XML with new tags. Accept

changes from Deepak B. and Nick

73

13 Appendix D: Considerations for Next or Future Releases
ID Description Priority

F-0001 Multiple OpenFlow controllers associated with a

single OpenFlow capable switch.

P0

F-

00

02

Adding additional configuration of queue related

attributes beyond what is described in OF 1.1

Section A.2.2

F-

00

03

OpenFlow Controller configuration and monitoring

F-

00

04

bootstrap/auto-discovery/auto-associate of

OpenFlow Capable Switches and the OpenFlow

Manager

