

UML Modeling Guidelines

TR-514 v1.3-info
July 2018

TR-514 UML Modeling Guidelines Version 1.3

Page 2 of 84 © Open Networking Foundation

Disclaimer

THIS SPECIFICATION IS PROVIDED ñAS ISò WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

1000 El Camino Real, Suite 100, Menlo Park, CA 94025

www.opennetworking.org

©2018 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to

identify, products or services of their respective owners.

Important note

This Technical Recommendations has been approved by the OIMT Project TST but has not been

approved by the ONF board. This Technical Recommendation has been approved under the ONF

publishing guidelines for 'Informational' publications that allow Project technical steering teams

(TSTs) to authorize publication of Informational documents. The designation of '-info' at the end

of the document ID also reflects that the project team (not the ONF board) approved this TR.

http://www.opennetworking.org/

TR-514 UML Modeling Guidelines Version 1.3

Page 3 of 84 © Open Networking Foundation

Table of Contents

1 Introduction ... 9

2 References ... 9

3 Abbreviations .. 9

4 Overview .. 10

4.1 Documentation Overview .. 10

4.2 Modeling approach ... 11

4.3 General Requirements .. 12

4.4 General Information on the UML Model.. 12

5 UML Artifact Descriptions .. 13

5.1 Structural/behavioral features ... 13

5.2 Classes ... 14

5.2.1 Description .. 14

5.2.2 Class Notation .. 14

5.2.3 Class Properties ... 15

5.3 Attributes in Classes ... 18

5.3.1 Description .. 18

5.3.2 Attribute Notation .. 18

5.3.3 Attribute Properties ... 18

5.3.4 Attribute Setability ... 23

5.4 Relationships .. 25

5.4.1 Description .. 25

5.4.2 Relationship Notation ... 26

5.4.3 Relationship Properties .. 33

5.5 Interfaces .. 37

5.5.1 Description .. 37

5.5.2 «Interface» Notation ... 37

5.5.3 «Interface» Properties .. 38

5.6 Interface Operations ... 39

5.6.1 Description .. 39

5.6.2 Operation Notation ... 39

5.6.3 Operation Properties .. 39

5.7 Operation Parameters... 42

5.7.1 Description .. 42

5.7.2 Parameter Notation .. 42

5.7.3 Parameter Properties ... 42

5.8 Notifications .. 44

5.8.1 Description .. 44

TR-514 UML Modeling Guidelines Version 1.3

Page 4 of 84 © Open Networking Foundation

5.8.2 Notification Notation ... 44

5.8.3 Notification Properties .. 44

5.9 Data Types .. 46

5.9.1 Description .. 46

5.9.2 Type Notation ... 46

5.9.3 Type Properties .. 47

5.9.4 UML Primitive Types .. 48

5.9.5 Pre-defined Data Types .. 49

5.10 Qualifiers and Conditions .. 52

5.11 Use Cases .. 53

5.12 Activities .. 54

5.13 State Machines ... 55

6 UML Profile Definitions ... 55

6.1 UML Profile Structure.. 55

6.2 Additional Properties for the General Information on the UML Model .. 56

6.3 Additional Common Properties for individual UML Model artifacts .. 56

6.4 Additional Interface related Properties for individual UML Model artifacts 61

6.5 Additional Properties for all UML artifacts... 63

6.5.1 Description .. 63

6.5.2 LifecycleState Property ... 63

6.5.3 Profile LifecycleState Property ... 65

6.5.4 Reference Property .. 68

6.5.5 Example Property ... 69

7 Recommended Modeling Patterns .. 69

7.1 File Naming Conventions .. 69

7.2 Model Structure ... 69

7.2.1 Generic Model Structure ... 69

7.2.2 Model Structure .. 70

7.3 Flexible Attribute Assignment to Classes ... 71

7.4 Use of Conditional Packages .. 72

7.5 Use of XOR ... 73

7.5.1 Description .. 73

7.5.2 Examples .. 73

7.5.3 Name style .. 76

7.5.4 «Choice» (Obsolete) ... 77

7.6 Proxy Class Modeling ... 78

7.7 «LifecycleAggregate» Aggregation Usage ... 79

7.8 Diagram Guidelines .. 82

7.8.1 Generic Diagram Guidelines .. 82

7.8.2 Using Colors ... 82

7.8.3 Style Sheets .. 82

8 Main Changes between Releases .. 83

TR-514 UML Modeling Guidelines Version 1.3

Page 5 of 84 © Open Networking Foundation

8.1 Summary of main changes between version 1.0 and 1.1 ... 83

8.2 Summary of main changes between version 1.1 and 1.2 ... 83

8.3 Summary of main changes between version 1.2 and 1.3 ... 84

List of Figures

Figure 4.1: Specification Architecture ... 11

Figure 5.1: Structural/Behavioral Features in UML 2.5 Metamodel .. 13

Figure 5.2: Graphical Notation for Classes ... 14

Figure 5.3: Graphical Notation for Classes without Attributes Compartment ... 14

Figure 5.4: Graphical Notation for Classes with Attributes and Deprecated Operations Compartment 15

Figure 5.5: «OpenModelClass» Stereotype .. 16

Figure 5.6: «OpenInterfaceModelClass» Stereotype (obsolete) ... 16

Figure 5.7: Potential Choice Annotation for Classes (obsolete) ... 17

Figure 5.8: Optional RootElement Annotation for Classes ... 17

Figure 5.9: Graphical Notation for Classes with Attributes ... 18

Figure 5.10: «OpenModelAttribute» Stereotype ... 20

Figure 5.11: uniqueSet usage example .. 20

Figure 5.12: «OpenInterfaceModelAttribute» Stereotype ... 21

Figure 5.13: Bit Definition Properties .. 22

Figure 5.14: Potential Annotations for Attributes .. 23

Figure 5.15: Example Modeling of a Bit Set Data Type .. 23

Figure 5.16: Actors setting the Attribute Value ... 24

Figure 5.17: Metaclass Diagram of used Relationships ... 26

Figure 5.18: Bidirectional Association Relationship Notations .. 26

Figure 5.19: Unidirectional Association Relationship Notation ... 27

Figure 5.20: ï Non-navigable Association Relationship Notation ... 27

Figure 5.21: ï Reference Pointer to Classes with more than one Composition Aggregation Association
Relationship Notation ... 28

Figure 5.22: Aggregation Association Relationship Notation .. 28

Figure 5.23: «LifecycleAggregate» Aggregation Association Relationship Notation 29

Figure 5.24: Composite Aggregation Association Relationship Notation ... 30

Figure 5.25: «StrictComposite» Aggregation Association Relationship Notation 30

Figure 5.26: «ExtendedComposite» Aggregation Association Relationship Notation 30

Figure 5.27: Generalization Relationship Notation (normal, conditional and example) 31

TR-514 UML Modeling Guidelines Version 1.3

Page 6 of 84 © Open Networking Foundation

Figure 5.28: Dependency Relationship Notation (normal and naming) .. 31

Figure 5.29: Usage Dependency Notation .. 32

Figure 5.30: Abstraction Dependency Notation .. 32

Figure 5.31: Conditional «Specify» Abstraction Relationship Example .. 33

Figure 5.32: Realization Dependency Notation .. 33

Figure 5.33: Owner of a navigable Member End .. 34

Figure 5.34: Potential Annotations for Associations ... 37

Figure 5.35: Graphical Notation for «Interface» .. 38

Figure 5.36: Graphical Notation for «Interface» without Attributes Compartment 38

Figure 5.37: «OpenModelInterface» Stereotype ... 39

Figure 5.38: Graphical Notation for «Interface» with Operations.. 39

Figure 5.39: «OpenModelOperation» Stereotype ... 41

Figure 5.40: Graphical Notation for «Interface» with Operations and Parameters 42

Figure 5.41: «OpenModelParameter» Stereotype .. 43

Figure 5.42: «PassedByReference» Stereotype... 44

Figure 5.43: Graphical Notation for «Signal» .. 44

Figure 5.44: «OpenModelNotification» Stereotype ... 45

Figure 5.45: Notification Trigger Condition List ... 45

Figure 5.46: Trigger Condition List Pop-up ... 45

Figure 5.47: Graphical Notation for «DataType» .. 46

Figure 5.48: Graphical Notation for «Enumeration» ... 46

Figure 5.49: Graphical Notation for «PrimitiveType» .. 47

Figure 5.50: Defining an Integer Value for a Literal .. 47

Figure 5.51: Potential Annotations for Data Types ... 48

Figure 5.52: Primitive Types provided by Papyrus ... 48

Figure 5.53: Common Data Types Grouping .. 50

Figure 5.54: Core and Implementation Common Data Types .. 50

Figure 5.55: Conditional Class Example ... 53

Figure 5.56: Conditional Attributes Example... 53

Figure 5.57: Example of Use Case Diagram .. 54

Figure 5.58: Example Business Process Modeling .. 55

Figure 6.1: UML Profile Structure ... 56

Figure 6.2: OpenModelStatement Required «Stereotype» ... 56

TR-514 UML Modeling Guidelines Version 1.3

Page 7 of 84 © Open Networking Foundation

Figure 6.3: OpenModel Profile: Required «Stereotypes» ... 57

Figure 6.4: OpenModel Profile: Optional «Stereotypes» .. 58

Figure 6.5: OpenInterfaceModel Profile: Required «Stereotypes» ... 61

Figure 6.6: OpenInterfaceModel Profile: Optional «Stereotypes» .. 62

Figure 6.7: Lifecycle «Stereotypes» .. 65

Figure 6.8: Profile Lifecycle «Stereotypes» .. 67

Figure 6.9: Lifecycle and ProfileLifecycle LifecycleState State Machine .. 68

Figure 6.10: Reference «Stereotype» ... 69

Figure 6.11: Example «Stereotype» ... 69

Figure 7.1: Core Model and SubModels ... 70

Figure 7.2: Model Structure (snapshot) .. 71

Figure 7.3: Pre-defined Packages at the Bottom Level of each UML Model (Example) 71

Figure 7.4: Flexible Attribute Assignment to Classes ... 72

Figure 7.5: Enhancing Classes Using Conditional Packages ... 73

Figure 7.6: {xor} Alternative Example ... 74

Figure 7.7: {xor} Probable Cause Type Example ... 74

Figure 7.8: {xor} Parent / Child Example ... 75

Figure 7.9: Multi Level {xor} Example ... 76

Figure 7.10: Information Model Element Example Using «Choice» Notation ... 77

Figure 7.11: Operations Model Element Example Using «Choice» Notation ... 78

Figure 7.12: Sink/Source/Bidirectional Termination Points Example Using «Choice» Notation 78

Figure 7.13: Proxy Class Modeling Example .. 79

Figure 7.14: Usage Example for «LifecycleAggregate» Aggregation Association 80

Figure 7.15: Instance Example for «LifecycleAggregate» Aggregation Association 81

List of Tables

Table 5.1: Table 11.1/[3] ï Collection Types for Properties .. 19

Table 5.2: Allowed combinations of isInvariant and writeAllowed .. 25

Table 6.1: OpenModel Profile: Complex «Stereotypes» ... 58

Table 6.2: OpenInterfaceModel Profile: Complex «Stereotypes» ... 62

TR-514 UML Modeling Guidelines Version 1.3

Page 8 of 84 © Open Networking Foundation

Document History

Version Date Description of Change

1.0
March 13,

2015
Initial version

1.1 Nov. 30, 2015

Version 1.1

A summary of main changes between version 1.0 and 1.1 is contained in section

8.1.

1.2 Sept. 20, 2016

Version 1.2

A summary of main changes between version 1.1 and 1.2 is contained in section

8.2.

1.3 July 2018

Version 1.3

A summary of main changes between version 1.2 and 1.3 is contained in section

8.3.

TR-514 UML Modeling Guidelines Version 1.3

Page 9 of 84 © Open Networking Foundation

1 Introduction

This Technical Recommendation has been developed within IISOMI (Informal Inter-SDO Open

Model Initiative) and is published by ONF.

IISOMI is an open source project founded by UML model designers from various SDOs like

ETSI NFV, ITU-T, MEF, ONF and TM Forum.

The goal is to develop guidelines and tools for a harmonized modeling infrastructure that is not

specific to any SDO, technology or management protocol and can then be used by all SDOs.

The deliverables are developed in an open source community under the ñCreative Commons

Attribution 4.0 International Public Licenseò.

This document defines the guidelines that have to be taken into account during the creation of a

protocol-neutral UML (Unified Modeling Language) information model. These UML Modeling

Guidelines are not specific to any SDO, technology or management protocol.

UML defines a number of basic model elements (UML artifacts). In order to assure consistent

and harmonious information models, only a selected subset of these artifacts is used in the UML

model guidelines in this document. The semantic of the selected artifacts is defined in [2].

The guidelines of each basic model artifact are divided into three parts:

1. Short description

2. Graphical notation examples

3. Properties

The guidelines have been developed using the Papyrus open source UML tool [1].

Note:

This version of the guidelines is still work in progress! Known open issues are marked in yellow

and described by comments.

2 References

[1] Papyrus Eclipse UML Modeling Tool (https://www.eclipse.org/papyrus/)

[2] Unified Modeling Language® (UML®) Resource Page (http://www.uml.org/)

[3] OMG Unified Modeling Language® (UML®), Version 2.5

(http://www.omg.org/spec/UML/2.5/)

[4] 3GPP/TM Forum Model Alignment JWG: FMC Model Repertoire

(ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-

SDO_Model_Alignment/S5eMA20139.zip)

3 Abbreviations

CORBA Common Object Request Broker Architecture

https://www.eclipse.org/papyrus/
http://www.uml.org/
http://www.omg.org/spec/UML/2.5/
ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-SDO_Model_Alignment/S5eMA20139.zip
ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-SDO_Model_Alignment/S5eMA20139.zip

TR-514 UML Modeling Guidelines Version 1.3

Page 10 of 84 © Open Networking Foundation

DS Data Schema

FMC Fixed-Mobile Convergence

HTTP Hypertext Transfer Protocol

IM Information Model

JMS Java Message Service

JSON JavaScript Object Notation

JWG Joint Working Group (TM Forum, 3GPP)

LCC Lower Camel Case

LTP Logical Termination Point

NA Not Applicable

OMG Object Management Group

PM Performance Monitoring

SDO Standards Developing Organization

UCC Upper Camel Case

UML Unified Modeling Language

XML Extensible Markup Language

WG Working Group

4 Overview

4.1 Documentation Overview

This document is part of a suite of guidelines. The location of this document within the

documentation architecture is shown in Figure 4.1 below:

TR-514 UML Modeling Guidelines Version 1.3

Page 11 of 84 © Open Networking Foundation

IISOMI / Bernd Zeuner (DT)

UML to DS Mapping
Guidelines

Core Fragment

Technology
specific

Χ

Specific
Fragments

App
specific

G
u

id
e

lin
e

s

YANG

xx

g
u

id
e

Interface-specific
Data Schemas

xx

xx

Interface-specific
Encodings

mapping

mapping

mapping
g

u
id

e

pruning
re-factoring

pruning
re-factoring

pruning
re-factoring

a

Purpose-specific
IMs

b

g
u

id
e

g
u

id
e

U
M

L
 M

o
d

e
ls

TR-513: Common Information Model Overview
(structure, development process)

g
u

id
e

g
u

id
e

g
u

id
e

g
u

id
e

g
u

id
e

g
u

id
e

g
u

id
e

xx

Common Information Model

c

z

TR-512: Core Network
(Forwarding, Topology,

Termination,
FoundationΣ Χύ

IISOMI531: UML
to YANG Mapping

Guidelines

Tooling

UML
|

YANG

UML
|

JSON

UML
|

TOSCA

UML
|

protobuf

multi
SDO

IISOMI

Figure 4.1: Specification Architecture

4.2 Modeling approach

The information model is split into a structural part and a behavioral part; i.e., data model

(structural/static) is decoupled from operations model (behavioral/dynamic).

Important note:

It is important to understand that the UML class diagrams always show only parts of the

underlying model. E.g., classes shown without attributes do not mean that the class has no

attribute, i.e., attributes could be hidden in a diagram. The full model can be viewed in its

entirety through the UML tool (i.e., Papyrus; XMI codes in the .uml file) and a view of key

details is provided in a data dictionary.

Also note that in this document, use of the term ñClassò refers to a UML class, unless otherwise

specified.

TR-514 UML Modeling Guidelines Version 1.3

Page 12 of 84 © Open Networking Foundation

4.3 General Requirements

¶ UML 2.5 (Unified Modeling Language) is used for specifying the model.

¶ The model shall be management/control protocol-neutral, i.e., not reflect any middleware

protocol-specific characteristics (like e.g., CORBA, HTTP, JMS).

¶ The model shall be map-able to various protocol-specific interfaces.

It is recommended to automate this mapping supported by tools.

¶ To ensure proper working of the mapping tools, the model designer shall only use the

modeling patterns defined in these guidelines. Use of other UML patterns is at the own

risk of the model designer.

¶ It shall be possible to separate UML artifact properties which are only required for

interface related (purpose specific) models.

¶ Traceability from each modeling construct back to requirements and use cases shall be

provided whenever possible.

4.4 General Information on the UML Model

The following general information on the model shall be set/defined:

¶ Namespace

A unique and persistent namespace for the identifiers in the model.

¶ Organization

A human friendly written name of the SDO/OpenSource Project defining the model.

¶ Contact

Detailed information on the project and editor which have developed the model.

o Project web site

The URL of the project web site.

o Project email address

The e-mail address of the project.

o Editor name

The name of the model editor (optional). It is recommended that editor name be a

persistent role name instead or a personal name because of the possibility of the

personôs role change.

o Editor email address

The e-mail address of the model editor (optional). It is recommended that editor

email address be a persistent address instead of a personal email address because

of the possibility of the personôs role change.

¶ Description

A brief description of the model content; 1 line (optional).

¶ Copyright

The copyright notice for the model.

¶ License

The license statement for the model.

TR-514 UML Modeling Guidelines Version 1.3

Page 13 of 84 © Open Networking Foundation

¶ Revision

Detailed information on this revision of the model. Each revision of the model should add

an additional revision statement.

o Date

The date of the revision.

o Version

The project and the version of the revision.

o Description

An additional specific description of the revision (optional).

o Change log pointer

A link to a github UML change log (optional).

o Additional changes

A list of additional manual changes (optional).

o Reference

A list of referenced documents in the revision (optional).

5 UML Artifact Descriptions

5.1 Structural/behavioral features

The UML 2.5 specification [3] distinguishes between structural and behavioral features. The

structural modeling is using Attributes (Properties) contained in Classes and the behavioral

modeling is using Operations contained in Interfaces.

Figure 5.1: Structural/Behavioral Features in UML 2.5 Metamodel

The decoupling of attributes and operations allows a model designer to provide individual

operations (specific parameter lists) for different views/managers.

TR-514 UML Modeling Guidelines Version 1.3

Page 14 of 84 © Open Networking Foundation

5.2 Classes

5.2.1 Description

Classes are used to convey a structural (often called static)1 representation of an entity, including

properties and attributes; i.e., data model, the structural part of the model.

5.2.2 Class Notation

Figure 5.2: Graphical Notation for Classes

As highlighted in Figure 5.2, a class is represented with a name compartment and an attributes

compartment. It is recommended that the name compartment contains also the assigned lifecycle

stereotypes. The attributes compartment can be set in a diagram to not expose the attributes or to

expose some or all of the attributes.

In some diagrams the attributes are hidden to reduce clutter, in others only a subset of the

attributes is exposed to focus attention on those attributes. It is also possible to hide the attribute

compartment of a class in the class diagrams where a large number of classes need to be shown,

as depicted in Figure 5.3.

Figure 5.3: Graphical Notation for Classes without Attributes Compartment

It is recommended that the name compartment also show stereotypes for the class where

relevant. When showing stereotypes, the compartment may include the stereotype

«OpenModelClass» (as all classes in the model have this stereotype by default) and may also

include other stereotypes.

In the general UML definition, a class may have name, attribute and operation compartments, as

shown in Figure 5.4, but since the structural part and the behavioral part of the model are

decoupled, the operation compartment, is not used and always hidden.

1 Not about operations acting on the entity.

TR-514 UML Modeling Guidelines Version 1.3

Page 15 of 84 © Open Networking Foundation

Figure 5.4: Graphical Notation for Classes with Attributes and Deprecated Operations Compartment

5.2.3 Class Properties

A class has the following properties:

¶ Name

Follows Upper Camel Case style (UCC). Each class in the model has a unique name. An

example of Upper Camel Case: SubNetworkConnection.

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

2

¶ Superclass(es)

Inheritance and multiple inheritance may be used to deal with shared properties.

¶ Abstract

Indicates if the object class can be instantiated or is just used for inheritance; i.e., abstract

classes will not be instantiated.

¶ Is Leaf

Indicates that the object class must not be extended (Is Leaf = true); default = false.

¶ Additional properties are defined in the «OpenModelClass» stereotype which extends

() by default (required) the «metaclass» Class:

2 Because of Papyrus tool reasons, you shall not create comments directly in the class diagram and attach it by a link

to the class. Such comments appear in applied comments field too, BUT they donôt appear in the gendoc output.

TR-514 UML Modeling Guidelines Version 1.3

Page 16 of 84 © Open Networking Foundation

Figure 5.5: «OpenModelClass» Stereotype

¶ support

This property qualifies the support of the class class at the management interface. See

definition in clause 5.10.

¶ condition

This property contains the condition for the condition-related support qualifiers.

¶ Obsolete

Additional interface related properties (only relevant in the purpose-specific models of

the information model; see Figure 4.1) are defined in the «OpenInterfaceModelClass»

stereotype which extends

() by default (required) the «metaclass» Class:

Figure 5.6: «OpenInterfaceModelClass» Stereotype (obsolete)

¶ objectCreationNotification

Defines whether an object creation notification has to be sent when the instance is

created.

¶ objectDeletionNotification

Defines whether an object deletion notification has to be sent when the instance is

deleted.

¶ Other properties:

¶ Choice (obsolete)

This optional stereotype identifies a class as a choice between different alternatives.

TR-514 UML Modeling Guidelines Version 1.3

Page 17 of 84 © Open Networking Foundation

Figure 5.7: Potential Choice Annotation for Classes (obsolete)

¶ RootElement

This optional stereotype is only relevant in interface related (purpose-specific) models

and identifies the associated object class as the root element when mapped to a tree

structured data model.

The name property specifies the name for the root instance.

The multiplicity property defines the constraint of the number of root elements in the

data model. The format is similar to the UML multiplicity; i.e., <lower

bound>..<upper bound>. E.g., "0..*", "2..3", "1..*".

The optional description property will be mapped e.g., in YANG to the presence

statement.

Figure 5.8: Optional RootElement Annotation for Classes

The following UML defined class properties are not used:

¶ Is active (default = false)

¶ Visibility (default = public)

TR-514 UML Modeling Guidelines Version 1.3

Page 18 of 84 © Open Networking Foundation

5.3 Attributes in Classes

5.3.1 Description

Attributes contain the properties3 of a class. Note that the roles of navigable association ends

become an attribute in the class at the other associated end when this association end is owned by

the classifier; see also ñRole Typeò property in clause 5.4.3.

Note: The association end can also be owned by the association itself in which case it does not

become an attribute.

5.3.2 Attribute Notation

The notation is:

|«<list of stereotypes>»| <visibility> <attribute name> : <attribute type> [<multiplicity>] =

<default value>

Note: When no default is relevant or no default is defined, the ñ=ò is not shown.

Figure 5.9: Graphical Notation for Classes with Attributes

Note: It is recommended to display either no attributes or all attributes of the object classes in

given class diagram.

It is also permissible to display only a subset of the attributes (e.g., to allow the drawing of a

class diagram displaying only the required attributes of a specific feature) BUT in this case, it is

recommended to warn the reader of such a class diagram by an appropriate note.

5.3.3 Attribute Properties

An attribute has the following properties:

¶ Name

Follows Lower Camel Case (LCC) style and is unique across all attribute names within

the inheritance tree. An example of Lower Camel Case:

subNetworkConnectionIdentifier.

It is recommended that all Boolean typed attribute names start with óisô (e.g.,

óisAbstractô), ómustô or a verb such as óhasô and the whole attribute name shall be

composed in a way that it is possible to answer it by "true" or "false".

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

3 In Papyrus an attribute is a property.

TR-514 UML Modeling Guidelines Version 1.3

Page 19 of 84 © Open Networking Foundation

¶ Ordered

For a multi-valued multiplicity; this specifies whether the values in an instantiation of

this attribute are sequentially ordered; default is false.

¶ Unique

For a multi-valued multiplicity, this specifies if the values of this attribute instance are

unique (i.e., no duplicate attribute values); default is true.

Excerpt from [3] : When Unique is true (the default), the collection of values may not

contain duplicates. When Ordered is true (false being the default) the collection of values

is ordered. In combination these two allow the type of a property to represent a collection

in the following way:

Table 5.1: Table 11.1/[3] ï Collection Types for Properties

Ordered Unique Collection type

false true Set

true true OrderedSet

false false Bag

true false Sequence

¶ Is Leaf

Indicates if the attribute definition is either fully consolidated (Is Leaf = true) or is not

fully consolidated / cannot be consolidated (Is Leaf = false). E.g., in case of an

Enumeration typed attribute, because the associated set of Literals is known to be open

(or has to be left open) for future yet not known or not consolidated extensions.

Default = false.

¶ Type

Refers to a data type; see clause 5.9.

¶ Default Value

Provides the value that the attribute has to start with in case the value is not provided

during creation, or already defined because of a system state.

¶ Multiplicity (*, 1, 1..*, 0..1, é)

Defines the number of values the attribute can simultaneously have.

 * is a list attribute with 0, one or multiple values;

 1 attribute has always one value;

 1..* is a list attribute with at least one value;

 0..1 attribute may have no or at most one value;

Default value is 1.

Other values are possible; e.g., ñ2..17ò.

¶ Additional properties are defined in the «OpenModelAttribute» stereotype which extends

() by default (required) the «metaclass» Property:

TR-514 UML Modeling Guidelines Version 1.3

Page 20 of 84 © Open Networking Foundation

Figure 5.10: «OpenModelAttribute» Stereotype

¶ partOfObjectKey

This property indicates if the attribute is part of the object key or not.

Value = 0 (default) means the attribute is not part of the object key.

Values > 0 indicate that the attribute is part of the object key and the value defines the

order of the attribute in case the key is composed of more than one attribute.

Attributes which are used as a key shall be invariant (i.e., property isInvariant = true),

shall not be optional (i.e., the multiplicity shall be [1] or [1..x]) and the multiplicity

shall be [1] after the Pruning&Refactoring process; i.e., a UML to Data Schema

mapping tool shall not get a list attribute which is part of the object identifier.

¶ uniqueSet

This property defines if the attribute is part of a set of attributes which together (i.e.,

their values) have to be unique among all instances within a defined context.

No value means no uniqueness constraint.

An integer value identifies the uniqueness set.

An attribute may participate in more than one uniqueness sets.

Figure 5.11: uniqueSet usage example

¶ isInvariant

This property identifies if the value of the attribute can be changed after it has been

created; see also section 5.3.4.

TR-514 UML Modeling Guidelines Version 1.3

Page 21 of 84 © Open Networking Foundation

¶ valueRange

This property identifies the allowed values for the attribute.

¶ unsigned

This optional property indicates if the attribute type is unsigned (value = true) or

signed (value = false); if applicable, otherwise ignored.

¶ counter

This optional property defines the counter type of the attribute type; if applicable.

¶ unit

This optional property contains a textual definition of the unit associated with the

attribute value.

The spelling of the unit, including the ones beyond SI scope, shall be in accordance to

the NIST Publication 811 ñGuide for the Use of the International System of Units

(SI)ò (http://www.nist.gov/pml/pubs/sp811/index.cfm), clause 9 ñRules and Style

Conventions for Spelling Unit Namesò as modified by the ISO/IEC 80000 series

documents (https://www.iso.org/committee/46202.html).

¶ support

This property qualifies the support of the attribute at the management interface. See

definition in clause 5.10

¶ condition

This property contains the condition for the condition-related support qualifiers.

¶ Additional interface related properties (only relevant in the purpose-specific models of

the information model; see Figure 4.1) are defined in the «OpenInterfaceModelAttribute»

stereotype which extends

() by default (required) the «metaclass» Property:

Figure 5.12: «OpenInterfaceModelAttribute» Stereotype

¶ writeAllowed

This property defines when the CLIENT is allowed to set the attribute value; see also

section 5.3.4.

https://www.iso.org/committee/46202.html

TR-514 UML Modeling Guidelines Version 1.3

Page 22 of 84 © Open Networking Foundation

¶ attributeValueChangeNotification (obsolete)

This property defines whether a notification has to be raised when the attribute

changes its value or not.

¶ bitLength

This optional property defines the bit length of the attribute type; if applicable.

¶ encoding

This optional property defines the encoding of the attribute type; if applicable.

¶ bitsDefinition (preliminary solution 1)

This optional property defines the bits (flags) of a Bits typed attribute. Each bit is

further defined by its name, position, support and an optional description. The default

setting of each bit is defined in the default value of the Bits typed attribute; i.e., all

bits contained in the default value are set to ñ1ò.

Figure 5.13: Bit Definition Properties

¶ Other properties:

¶ «PassedByReference»

This stereotype shall only be applied to attributes that have a class defined as their

type; i.e., association member ends owned by the class which became attributes. The

stereotype is applied on a case by case basis.

The property defines that the attribute contains only the reference (name, identifier,

address) of the referred instance(s) when being transferred across the interface.

Otherwise the attribute contains the complete information of the instance(s) when

being transferred across the interface.

¶ «Bit» (preliminary solution2)

This optional stereotype defines the position of a bit typed attribute in a «Bits»

annotated data type.

TR-514 UML Modeling Guidelines Version 1.3

Page 23 of 84 © Open Networking Foundation

Figure 5.14: Potential Annotations for Attributes

Figure 5.15: Example Modeling of a Bit Set Data Type

The following UML defined attribute properties are not used:

¶ Is read only (default value = false)

¶ Is derived (default = false)

¶ Is derived union (default = false)

¶ Is static (default = false)

¶ Visibility (default = public)

5.3.4 Attribute Setability

UML model designers need to be able to define the ñsetabilityò of attribute values. Standard

UML provides a Boolean property called ñreadOnlyò. Since this is not enough to describe all

required cases ñreadOnlyò is not used and two additional properties isInvariant and writeAllowed

are defined.

From information model point of view (context) an attribute value can be set by two different

actors (a) directly by the client or (b) from elsewhere.

TR-514 UML Modeling Guidelines Version 1.3

Page 24 of 84 © Open Networking Foundation

Server

ObjectInstance:ObjectClass

attribute:value

Client

Underlying

System

Contextsetting value directly

setting value
from elesewhere

setting value indirectly

setting
value from
elsewhere

another

Client

Figure 5.16: Actors setting the Attribute Value

Legend:

¶ Red arrow

Setting of attribute is initiated directly by the client; i.e., setAttribute().

¶ Blue arrow

Setting of the attribute value has not been initiated directly by the client; i.e., is set from

elsewhere (e.g., indirectly by the client, other clients, server, underlying system).

Client, Server and Underlying System in the figure are at one level of recursion. There may be

many other levels below the Underlying System or above the Client.

One extreme example is the entire operatorôs business represented by the Server. Another

extreme example is when the Server represents a thin mediator on top of the traffic functions

(Underlying System).

The isInvariant property identifies (system wide) if the value of the attribute can be changed after

it has been created (isInvariant = false) or not (isInvariant = true).

The writeAllowed property defines (from the client point of view only) when the client is

directly allowed to set the attribute value. This can be {only during creation | only after creation |

during and after creation | at no time}; all values are mutually exclusive.

TR-514 UML Modeling Guidelines Version 1.3

Page 25 of 84 © Open Networking Foundation

The properties isInvariant and writeAllowed are related. The following table shows the allowed

combinations and their meaning:

Table 5.2: Allowed combinations of isInvariant and writeAllowed

isInvariant

(system wide)

writeAllowed

(client view)
meaning

1. false WRITE_NOT_ALLOWED e.g., operationalState

2. false UPDATE_ONLY initial value provided by the system

3. false CREATE_ONLY e.g., ODUflex with HAO

4. false CREATE_AND_UPDATE unrestricted read/write

5. true WRITE_NOT_ALLOWED e.g., identifier provided by the system

6. true UPDATE_ONLY
Not allowed

If isInvariant=true Ą set after creatin not possible

7. true CREATE_ONLY e.g., fixed size ODU, identifier provided by the client

8. true CREATE_AND_UPDATE
Not allowed

If isInvariant=true Ą set after creatin not possible

5.4 Relationships

5.4.1 Description

Relationships are defined between classes. Their relationship ends specify the role that the class

at that end performs.

TR-514 UML Modeling Guidelines Version 1.3

Page 26 of 84 © Open Networking Foundation

Figure 5.17: Metaclass Diagram of used Relationships

5.4.2 Relationship Notation

The following examples show the different kinds of relationships that are used in the model.

5.4.2.1 Association Notation

Figure 5.18 shows a bi-directional navigable association where each class has a pointer to the

other. The association end role name becomes the name of the corresponding attribute. I.e., in the

example: ClassA will have an attribute named ñ_classBò pointing to ClassB and vice versa.

Figure 5.18: Bidirectional Association Relationship Notations

TR-514 UML Modeling Guidelines Version 1.3

Page 27 of 84 © Open Networking Foundation

Both ways of displaying navigable association end role names are allowed in class diagrams; i.e.,

as role names (top of Figure 5.18) and as attributes (bottom of Figure 5.18).

It is not recommended to use both ways in a single class diagram since it provides redundant

information.

Figure 5.19 shows a unidirectional association (shown with an open arrow at the target class)

where only the source class has a pointer to the target class and not vice-versa.

Figure 5.19: Unidirectional Association Relationship Notation

Figure 5.20 shows a non-navigable association where none of the classes have a pointer to the

other; i.e., such associations are just for illustration purposes. Non-navigable associations should

have a name.

Figure 5.20: ï Non-navigable Association Relationship Notation

A reference pointer is a navigable association to a class. Such a class may be instantiated in

more than one naming path/tree. In order to identify the specific naming path/tree for a reference

pointer a ñREFERENCE_DEPENDENCYò constraint is added (context is the reference pointer).

This constraint relates the reference pointer to an individual «StrictComposite» composition

aggregation association.

TR-514 UML Modeling Guidelines Version 1.3

Page 28 of 84 © Open Networking Foundation

Figure 5.21: ï Reference Pointer to Classes with more than one Composition Aggregation Association
Relationship Notation

A shared aggregation is a special type of association in which objects are assembled or

configured together to create a more complex object. Aggregation protects the integrity of an

assembly of objects by defining a single point of coordination called aggregate, in the object that

represents the assembly.

Figure 5.22: Aggregation Association Relationship Notation

A «LifecycleAggregate» aggregation is a shared aggregation which indicates a lifecycle

dependency between a grouping instance and its shared part instances; similar to the lifecycle

dependency of a composite aggregation.

This option is intended to be used only when the shared part object class has another stronger

lifecycle dependency (such as composition).

The multiplicity at the grouping side of the «LifecycleAggregate» relationship defines the mode:

single = exclusive mode, one or more = shared mode.

In exclusive mode, a shared part object instance must not be aggregated by more than one

TR-514 UML Modeling Guidelines Version 1.3

Page 29 of 84 © Open Networking Foundation

grouping instance via a «LifecycleAggregate» relationship.

In shared mode, a shared part object instance can be aggregated by more than one grouping

instance via a «LifecycleAggregate» relationship.

A shared part instance has to have at all times a containing composite instance AND a single (in

case of exclusive mode) or at least one (in case of shared mode) aggregating grouping instance.

Figure 5.23: «LifecycleAggregate» Aggregation Association Relationship Notation

Note: The «LifecycleAggregate» association cannot define the operational behavior which can

be seen from containing or contained class point of view. Four deletion policies can be

distinguished:

1. Deletion of containing OwningClass instance deletes all contained instances

2. Deletion of containing GroupingClass instance deletes aggregated instances

3. Containing OwningClass instance must not be deleted as long as contained instances

exist

4. Containing GroupingClass instance must not be deleted as long as contained instances

exist

See also usage example in section 7.7.

A composite aggregation association is a strong form of aggregation that requires a part instance

be included in at most one composite at a time. If a composite is deleted, all of its parts are

deleted as well; i.e., the lifecycle of all instances of ClassB related to an instance classA is tied to

the lifecycle of the classA instance. It is possible for the part instance to move from one parent

instance to another.

TR-514 UML Modeling Guidelines Version 1.3

Page 30 of 84 © Open Networking Foundation

Note: In the example below, ClassA also names ClassB instances; defined by the «Names»

stereotype.

Figure 5.24: Composite Aggregation Association Relationship Notation

A «StrictComposite» aggregation association is a composite aggregation where it is NOT

possible for the part instance to move from one parent instance to another (as is allowed in

regular compositions).

Figure 5.25: «StrictComposite» Aggregation Association Relationship Notation

An «ExtendedComposite» aggregation is a more restrictive form of a «StrictComposite»

aggregation where the extending classes will never be explicitly instantiated (i.e., are abstract),

but that the attributes defined by the extending class will be transferred to the class being

extended at runtime, much like the UML Generalization relationship. In other words, the

extending classes are essentially carrying attributes of the extended class in a grouping-pack. The

extending class has a multiplicity of 0..1.

Figure 5.26: «ExtendedComposite» Aggregation Association Relationship Notation

Association classes are not used.

5.4.2.2 Generalization Notation

A generalization indicates a relationship in which one class (the child) inherits from another class

(the parent). A generalization relationship may be conditional, identified by the «Cond»

stereotype.

TR-514 UML Modeling Guidelines Version 1.3

Page 31 of 84 © Open Networking Foundation

Figure 5.27: Generalization Relationship Notation (normal, conditional and example)

5.4.2.3 Dependency Notation

 ñA dependency is a relationship that signifies that a single or a set of model elements requires

other model elements for their specification or implementation. This means that the complete

semantics of the depending elements is either semantically or structurally dependent on the

definition of the supplier element(s)...ñ, an extract from [2].

A dependency relationship may define naming identified by the «NamedBy» stereotype.

Figure 5.28: Dependency Relationship Notation (normal and naming)

The usage dependency relationship along with the relationship name indicates the dependency

between an Interface and the object class the Interface is working on.

TR-514 UML Modeling Guidelines Version 1.3

Page 32 of 84 © Open Networking Foundation

Figure 5.29: Usage Dependency Notation

The abstraction dependency relationship can be annotated by the «Specify» stereotype to

indicate that the definition of the more abstract entity class in the abstraction relationship is

augmented by the "specification" class definition at runtime. See also the definition in section

5.4.3 below.

Figure 5.30: Abstraction Dependency Notation

«Specify» annotated abstraction relationships must be started from abstract classes.

It is also possible to condition the «Specify» abstraction relationship based on attribute values.

The conditioning attribute and its value(s) is defined in a {constraint} attached to the «Specify»

relationship. It has to be set at creation time and needs to be invariant. The condition could also

be a list of attributes (e.g., attribute1 + attribute2) and need not be in the object class to be

specified.

TR-514 UML Modeling Guidelines Version 1.3

Page 33 of 84 © Open Networking Foundation

Figure 5.31: Conditional «Specify» Abstraction Relationship Example

The realization dependency relationship indicates the relationship between a base class and itôs

realizing class.

The realization dependency relationship along with the «PruneAndRefactor» stereotype

indicates the relationship between a Base Model class/relationship and the

cloned/pruned/refactored Purpose Specific Model class/relationship.

Figure 5.32: Realization Dependency Notation

5.4.3 Relationship Properties

A relationship has the following properties:

¶ Name

Follows Upper Camel Case (UCC) style and is unique across all relationship names

defined in the whole model.

The format for associations is "<Class1Name><VerbPhrase><Class2Name>" where the

verb phrase creates a sequence that is readable and meaningful. In case of a long class

name, it is also allowed to use a short form of the name.

TR-514 UML Modeling Guidelines Version 1.3

Page 34 of 84 © Open Networking Foundation

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

¶ Abstract (only association)

Associations which are just for explanation to the reader of the model are defined as

"abstract" (Note: In Papyrus, the abstract property is defined in the Advanced tab of the

Properties view). Their ends are not navigable and have no role names. Abstract

associations shall not be taken into account in a protocol specific implementation.

¶ Type

The following types are used:

¶ simple association,

¶ composition association,

¶ aggregation association,

¶ generalization,

¶ dependency,

¶ usage dependency,

¶ abstraction dependency,

¶ realization dependency.

¶ Role Name (only associations)

Follows Lower Camel Case (LCC) style with an underscore ñ_ò prefix and identifies the

role that the object plays at this end (Member End) of the association.

Only navigable Member Ends have role names and follow the definitions made for

attributes in clause 5.3.

¶ Role Type (only association)

The type of the role is fixed to the class attached to the association end. Therefore, it is

important to define the type as ñpassed by referenceò or ñpassed by valueò. Pointer and

shared aggregation associations are per default passed by reference (i.e., contain only the

reference (name, identifier, address) to the referred instance(s) when being transferred

across the interface). The composition aggregation, «StrictComposite» and

«ExtendedComposite» associations are always passed by value (i.e., contain the complete

information of the instance(s) when being transferred across the interface).

Note: The Owner of a navigable Member End has to be the Classifier to become an

attribute in the class.

Figure 5.33: Owner of a navigable Member End

TR-514 UML Modeling Guidelines Version 1.3

Page 35 of 84 © Open Networking Foundation

¶ Role Multiplicity (only association)

Identifies the number of class instances that can participate in an instance of the

association.

¶ Additional optional properties:

¶ «Names» (only association)

The «Names» stereotype identifies that the association is used to define the naming.

¶ «NamedBy» (only dependency)

The «NamedBy» stereotype identifies that a dependency relationship is used to define

naming.

¶ «Cond» (all relationships)

The «Cond» stereotype identifies that the relationship is conditional. The condition is

also provided.

¶ «StrictComposite» (only association)

The «StrictComposite» stereotype can only be applied to associations with a

composite end (i.e., composite aggregation association). It means that the content of

the ñpartsò classes is part of the ñcomposedò parent class and has no opportunity for

independent lifecycle. In this case although an instance of the "parts" classes can be

created and deleted anytime, it has to be in the context of the "composed" parent

class. In other words, the parent class instance has to exist and it is NOT possible for

the "part" instance to move from one parent instance to another (allowed in regular

composition).

Whereas in an association with a composite end that is not «StrictComposite» the

composed class is a part that has a restricted independent lifecycle. In this case an

instance of the composed class can be created and deleted in the context of the parent

class and should be represented as a separate instance from the parent in an

implementation. This is especially true where there is a recursive composition. It is

possible that in some cases the composed instance could move from one parent to

another so long as it exists with one parent only at all points of the transaction. This

move is not meaningful for a class associated via a «StrictComposite» association.

¶ «ExtendedComposite» (only association)

The «ExtendedComposite» stereotype indicates a more restrictive form of

"StrictComposite" where the "extending" classes will never be explicitly instantiated,

but that the attributes defined by the ñextendingò class will be transferred to the class

being ñextendedò at runtime, much like the UML ñGeneralizationò relationship (with

the difference, that in the «ExtendedComposite» case the ñextendedò class is

instantiated and in the ñGeneralizationò case the subclass is instantiated). In other

words, the "extendingò classes are strictly composed, they are essentially carrying

attributes of the ñextendedò class in a grouping-pack and often referred to as "_Pacs".

¶ «LifecycleAggregate» (only shared aggregation association)

A «LifecycleAggregate» aggregation is a shared aggregation which indicates a

lifecycle dependency between a grouping instance and its shared part instances;

similar to the lifecycle dependency of a composite aggregation.

The «LifecycleAggregate» aggregation can only be used jointly with another stronger

lifecycle dependency (such as composition) to the same part instance; i.e., must not

be used alone.

TR-514 UML Modeling Guidelines Version 1.3

Page 36 of 84 © Open Networking Foundation

¶ «PruneAndRefactor» (only realization)

The «PruneAndRefactor»stereotype identifies that a realization association is used to

identify pruning and refactoring.

¶ «Specify» (only abstraction)

The çSpecifyè stereotype is applied on the UML ñAbstractionò relationship to

indicate that the definition of the more abstract entity class in the abstraction

relationship is augmented by the "specification" class definition at runtime.

Furthermore, there is a potential for an entity class definition to be augmented by

more than one "specification" class definitions. In other words, one of the

specification classes adds-to and expands the runtime-definition of the entity class.

This also implies that the entity class cannot be aware of the existence of specification

classes at design time. Since the ñSpecifyò relationship is defined to support runtime

code/schema generation and dependency injection, a stereotype-property ñtargetò is

defined to point to the actual node being augmented within the object/instance

schema. The "target" value should be in the following format:

[/<ModelName>:<ClassName>]+:<AttributeName>.

Example: TopologyContext in TapiTopology augments Context in TapiCommon

target=/TapiCommon:Context:_context

Example: NodeEdgePointLpSpec in TapiOdu specifies LayerProtocol definition for

NodeEdgePoint in TapiTopology

target=/TapiTopology:TopologyContext/TapiTopology:Topology/TapiTopology:Nod

e/Tapi:Topology:NodeEdgePoint/_layerProtocol.

TR-514 UML Modeling Guidelines Version 1.3

Page 37 of 84 © Open Networking Foundation

Figure 5.34: Potential Annotations for Associations

The following UML defined role/attribute properties are not used:

¶ Visibility (default = public)

5.5 Interfaces

5.5.1 Description

An «Interface» is used to group operations, i.e., models the dynamic part of the model.

Groupings of operations can be used to modularize the functionalities of the specification.

Note: Interfaces (and operations) may only be defined in the purpose-specific models of the

information model; see Figure 4.1.

5.5.2 «Interface» Notation

Interfaces are identified by the stereotype «Interface».

TR-514 UML Modeling Guidelines Version 1.3

Page 38 of 84 © Open Networking Foundation

Figure 5.35: Graphical Notation for «Interface»

«Interfaces» usually have name, attributes and operations compartments. The structural part and

the behavioral part of the model are decoupled. Therefore, the attributes compartment is not used

and always empty. It is also possible to hide the attributes compartment in the interface

diagrams.

Figure 5.36: Graphical Notation for «Interface» without Attributes Compartment

Note: The graphical notation of an «Interface» may show an empty operation compartment so as

to reduce clutter even if the «Interface» has operations.

5.5.3 «Interface» Properties

An «Interface» has the following properties:

¶ Name

Follows Upper Camel Case (UCC) style and is unique across all «Interface» names in the

model.

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

¶ Superinterface(s)

Inheritance and multiple inheritance may be used.

¶ Abstract

Indicates if the «Interface» can be instantiated or is just used for inheritance.

¶ Additional properties are defined in the «OpenModelInterface» stereotype which extends

() by default (required) the «metaclass» Interface:

TR-514 UML Modeling Guidelines Version 1.3

Page 39 of 84 © Open Networking Foundation

Figure 5.37: «OpenModelInterface» Stereotype

¶ support

This property qualifies the support of the «Interface» at the management interface.

See definition in clause 5.10.

¶ condition

This property contains the condition for the condition-related support qualifiers.

The following UML defined interface properties are not used:

¶ Is leaf (default = false)

¶ Visibility (default = public)

5.6 Interface Operations

5.6.1 Description

Operations can be defined within an «Interface». An «Interface» shall have at least one

operation.

Note: Operations may only be defined in the purpose-specific models of the information model;

see Figure 4.1.

5.6.2 Operation Notation

Figure 5.38: Graphical Notation for «Interface» with Operations

5.6.3 Operation Properties

An operation has the following properties:

TR-514 UML Modeling Guidelines Version 1.3

Page 40 of 84 © Open Networking Foundation

¶ Name

Follows Lower Camel Case (LCC) style and is unique across all operation names defined

in the whole model.

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

¶ Pre-condition(s)

This property defines the conditions that have to be true before the operation can be

started (i.e., if not true, the operation will not be started at all and a general ñprecondition

not metò error will be returned, i.e., exception is raised).

¶ Post-condition(s)

This property defines the state of the system after the operation has been executed (if

successful, or if not successful, or if partially successful).

Note that partially successful post-condition(s) can only be defined in case of non-atomic

operations.

Note that when an exception is raised, it should not be assumed that the post-condition(s)

are satisfied.

¶ Parameter(s)

See clause 5.7.

¶ Operation Exceptions

Lists the allowed exceptions for the operation.

The model uses predefined exceptions which are split in 2 types:

- generic exceptions which are associated to all operations by default

- common exceptions which needs to be explicitly associated to the operation.

Note: These exceptions are only relevant for a protocol neutral information model.

Further exceptions may be necessary for a protocol specific information model.

Generic exceptions:

¶ Internal Error: The server has an internal error.

¶ Unable to Comply: The server cannot perform the operation. Use Cases may identify

specific conditions that will result in this exception.

¶ Comm Loss: The server is unable to communicate with an underlying system or

resource, and such communication is required to complete the operation.

¶ Invalid Input: The operation contains an input parameter that is syntactically incorrect

or identifies an object of the wrong type or is out of range (as defined in the model or

because of server limitation).

¶ Not Implemented: The entire operation is not supported by the server or the operation

with the specified input parameters is not supported.

¶ Access Denied: The client does not have access rights to request the given operation.

Common exceptions:

TR-514 UML Modeling Guidelines Version 1.3

Page 41 of 84 © Open Networking Foundation

¶ Entity Not Found: Is thrown to indicate that at least one of the specified entities does

not exist.

¶ Object In Use: The object identified in the operation is currently in use.

¶ Capacity Exceeded: The operation will result in resources being created or activated

beyond the capacity supported by the server.

¶ Not In Valid State: The state of the specified object is such that the server cannot

perform the operation. In other words, the environment or the application is not in an

appropriate state for the requested operation.

¶ Duplicate: Is thrown if an entity cannot be created because an object with the same

identifier/name already exists.

¶ Additional properties are defined in the «OpenModelOperation» stereotype which

extends

() by default (required) the «metaclass» Operation:

Figure 5.39: «OpenModelOperation» Stereotype

¶ isOperationIdempotent (Boolean) (obsolete)

This property defines if the operation is idempotent (true) or not (false).

Example: When an operation is going to create an instance which does already exist,

an idempotent operation would return success and a non-idempotent operation would

return an exception.

¶ isAtomic (Boolean) (obsolete)

This property identifies if the operation is best effort or is successful / not successful

as a whole.

¶ support

This property qualifies the support of the operation at the management interface. See

definition in clause 5.10.

¶ condition

This property contains the condition for the condition-related support qualifiers.

The following UML defined operation properties are not used:

¶ Is leaf (default = false)

¶ Is query (default = false)

¶ Is static (default = false)

TR-514 UML Modeling Guidelines Version 1.3

Page 42 of 84 © Open Networking Foundation

5.7 Operation Parameters

5.7.1 Description

Parameters define the input and output signals of an operation.

Note: Operations and their parameters may only be defined in the purpose-specific models of the

information model; see Figure 4.1.

5.7.2 Parameter Notation

The notation is:

<visibility> <direction> <parameter name> : <parameter type> [<multiplicity>] = <default

value>

Note: When no default is relevant or no default is defined, the ñ=ò is not shown

Figure 5.40: Graphical Notation for «Interface» with Operations and Parameters

5.7.3 Parameter Properties

A parameter has the following properties:

¶ Name

Follows Lower Camel Case (LCC) style

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

¶ Direction

Parameters can be defined as:

- input parameters

- output parameters

- in out parameters

TR-514 UML Modeling Guidelines Version 1.3

Page 43 of 84 © Open Networking Foundation

¶ Type

Refers to a data type.

Note that a list of parameters can also be combined in a complex data type.

¶ Default Value

Defines the value that the parameter has in case the value is not provided. If it is

mandatory to provide a value, the default value is set to NA.

¶ Is Ordered

Defines for a multi-valued parameter that the order of the values is significant.

¶ Multiplicity

Defines the number of values the parameter can simultaneously have.

¶ Additional properties are defined in the «OpenModelParameter» stereotype which

extends

() by default ({required}) the «metaclass» Parameter:

Figure 5.41: «OpenModelParameter» Stereotype

¶ valueRange

Identifies the allowed values for the parameter.

¶ support

This property qualifies the support of the parameter at the management interface. See

definition in clause 5.10.

¶ condition

This property contains the condition for the condition-related support qualifiers.

¶ Other properties:

¶ PassedByReference

This property is only relevant in interface related (purpose-specific) models and shall

only be applied to parameters that have an object class defined as their type; i.e., on a

case by case basis.

The property defines if the attribute contains only the reference (name, identifier,

address) to the referred instance(s) when being transferred across the interface.

Otherwise the parameter contains the complete information of the instance(s) when

being transferred across the interface.

TR-514 UML Modeling Guidelines Version 1.3

Page 44 of 84 © Open Networking Foundation

Figure 5.42: «PassedByReference» Stereotype

The following UML defined parameter properties are not used:

¶ Is exception (default = false)

¶ Is stream (default = false)

¶ Is unique (default = true)

¶ Visibility (default = public)

5.8 Notifications

5.8.1 Description

Note: Notifications may only be defined in the purpose-specific models of the information

model; see Figure 4.1.

The UML «Signal» artifact is used to define the content of a notification. The information is

defined in the attributes of the «Signal».

5.8.2 Notification Notation

Figure 5.43: Graphical Notation for «Signal»

5.8.3 Notification Properties

A notification/signal has the following properties:

¶ Name

Follows Upper Camel Case (UCC) style. Each notification/signal in the model has a

unique name. An example of Upper Camel Case: ObjectCreationNotification.

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

TR-514 UML Modeling Guidelines Version 1.3

Page 45 of 84 © Open Networking Foundation

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

¶ Superclass(es)

Inheritance and multiple inheritance may be used to deal with shared properties.

¶ Abstract

Indicates if the notification/signal can be instantiated or is just used for inheritance.

¶ Additional properties are defined in the «OpenModelNotification» stereotype which

extends () by default (required) the «metaclass» Signal:

Figure 5.44: «OpenModelNotification» Stereotype

¶ triggerConditionList

This property contains the triggering conditions that cause the notification. Create one

element in the trigger condition list per trigger as shown on the figure below:

Figure 5.45: Notification Trigger Condition List

Use the green + button to create a new element in the list:

Figure 5.46: Trigger Condition List Pop-up

TR-514 UML Modeling Guidelines Version 1.3

Page 46 of 84 © Open Networking Foundation

¶ support

This property qualifies the support of the notification/signal at the management

interface. See definition in clause 5.10.

¶ condition

This property contains the condition for the condition-related support qualifiers.

The following UML defined class properties are not used:

¶ Is leaf (default = false)

¶ Visibility (default = public)

5.9 Data Types

5.9.1 Description

Data Types are used as type definitions of attributes and parameters.

Data Types are divided into 3 categories:

¶ (Complex) Data Types (further structured; e.g., Host which combines ipAddress and domainName)

¶ Primitive Types (not further structured; e.g., Integer, MAC address).

¶ Enumerations

5.9.2 Type Notation

Figure 5.47: Graphical Notation for «DataType»

Note: Default values may not be shown in all class diagrams.

Figure 5.48: Graphical Notation for «Enumeration»

TR-514 UML Modeling Guidelines Version 1.3

Page 47 of 84 © Open Networking Foundation

Figure 5.49: Graphical Notation for «PrimitiveType»

5.9.3 Type Properties

A type has the following properties:

¶ Category

Three categories are used in the model:

- dataType

- enumeration

- primitive

¶ Name

Follows Upper Camel Case (UCC) style and is unique across all data type names defined

in the whole model.

¶ Documentation

Contains a short definition. The documentation is carried in the ñApplied commentsò

field in Papyrus; i.e., the ñOwned commentsò field shall not be used. The complete

documentation should be written in a single comment; i.e., at most one ñApplied

commentò.

¶ Specific Data Type attribute properties (only relevant for Data Types)

Follow the definitions made for attributes in clause 5.3 with the following exceptions:

- the isInvariant property can be ignored and is fixed to "true"

- the notification property can be ignored and is fixed to "NA".

¶ Specific Enumeration properties (only relevant for Enumerations)

The literal name contains only upper case characters where the words are separated by

"_".

It is possible to add an integer value to each literal.

Figure 5.50: Defining an Integer Value for a Literal

TR-514 UML Modeling Guidelines Version 1.3

Page 48 of 84 © Open Networking Foundation

The property ñisLeafò is used to define if the list of literals is fixed or is open for

enhancement in future releases. isLeaf = true Ą fixed literal list; isLeaf = false Ą literal

list may be enhanced.

¶ Additional properties

¶ «Choice» (obsolete)

This stereotype identifies a data type as a choice between different alternatives; see

also clause 7.5.

¶ «Exception»

This stereotype defines a data type used for an operation exception.

¶ «Bits» (preliminary solution 2)

This optional stereotype defines a data type used for defining a bit set. Each bit is

defined as an attribute of the data type; see also Figure 5.15.

Figure 5.51: Potential Annotations for Data Types

The following UML defined attribute properties are not used:

¶ Is abstract (default = false)

¶ Is leaf (default = false)

5.9.4 UML Primitive Types

Papyrus already provides the following UML primitive types:

Figure 5.52: Primitive Types provided by Papyrus

Notes:

The ñUnlimited Naturalò Primitive data type shall not be used.

Papyrus also exposes the internal Eclipse eCore primitives which are not to be used in models.

The UML Primitive Types can be further restricted by the annotation of the following properties

contained in the OpenModelAttribute stereotype (see definitions in clause 5.3.3):

TR-514 UML Modeling Guidelines Version 1.3

Page 49 of 84 © Open Networking Foundation

¶ bitLength

¶ unsigned

¶ encoding

¶ counter

For example: «UNSIGNED, LENGTH_8_BIT» Integer or «HexEncoded» String.

Note that common floating point types ófloatô and ódoubleô are represented using the profile as

below:

¶ Float (single-precision, 32-bit IEEE 754 floating point): «LENGTH_32_BIT»Real

¶ Double (double-precision, 64-bit IEEE 754 floating point): «LENGTH_64_BIT»Real.

5.9.5 Pre-defined Data Types

Additional common data types are defined in two separate model libraries which are imported to

every UML model. The CoreCommonDataTypes should be used for models before

pruning&refactoring and the ImplementationCommonDataTypes should be used for models after

pruning&refactoring.

Note that model projects should not create their own primitive types. Requests for new primitive

types should be made to the IISOMI team so they can be included in the standard Papyrus files

and then available to all modeling teams.

Similar data types are grouped together to ease the search of the adequate data type by the model

designer. The following groupings and containing data types are under discussion at the time of

publication of these guidelines.

TR-514 UML Modeling Guidelines Version 1.3

Page 50 of 84 © Open Networking Foundation

Figure 5.53: Common Data Types Grouping

Figure 5.54: Core and Implementation Common Data Types

TR-514 UML Modeling Guidelines Version 1.3

Page 51 of 84 © Open Networking Foundation

Address related Types

¶ IpAddress

¶ Ipv4Address

¶ Ipv6Address

¶ IpAddressNoZone

¶ Ipv4AddressNoZone

¶ Ipv6AddressNoZone

¶ Ipv4Prefix

¶ Ipv6Prefix

¶ IpPrefix

¶ MacAddress

Date and Time related Types

¶ DateTime

Domain Name and URI related Types

¶ DomainName

¶ Uri

Identifier related Types

¶ ObjectIdentifier

¶ ObjectIdentifier128

Protocol Field related Types

¶ Dscp

TR-514 UML Modeling Guidelines Version 1.3

Page 52 of 84 © Open Networking Foundation

¶ IpVersion

¶ IpV6FlowLabel

¶ PortNumber

String related Types

¶ DottedQuad

¶ Uuid

5.10 Qualifiers and Conditions

This clause defines the qualifiers applicable for model elements specified in this document, e.g.,

the «OpenModelClass» (see clause 5.2.3), and the «OpenModelAttribute» (see clause 5.3.3). The

qualifications are M, O, CM, CO and C. Their meanings are specified in this clause. This type of

qualifier is called Support Qualifier.

¶ Definition of M (Mandatory) qualification:

The model element shall be supported.

¶ Definition of O (Optional) qualification:

The model element may, but needs not to, be supported.

¶ Definition of CM (Conditional-Mandatory) qualification:

The model element shall be supported under certain conditions. If the specified

conditions are met then the model element shall be supported.

¶ Definition of CO (Conditional-Optional) qualification:

The model element may, but needs not to, be supported under certain conditions. If the

specified conditions are met then the model element may, but needs not to, be supported.

If the specified conditions are not met then the model element shall be supported.

¶ Definition of C (Conditional) qualification:

Used for model elements that have multiple constraints. Each constraint is worded as a

condition for one kind of support, such as mandatory support, optional support or "no

support". All constraints shall be related to the same kind of support. Specifically:

Each model element with C qualification shall have the corresponding multiple

constraints defined in the specification. If all specified constraints are met and are related

to mandatory, then the model element shall be supported. If all the specified constraints

are met and are related to optional, then the model element may, but needs not to, be

supported. If all the specified constraints are met and are related to "no support", then the

model element shall not be supported.

The condition property contains the condition for the condition-related support qualifiers (CM,

CO, C). Often different conditional UML artifacts share the same condition. It is therefore

recommended to group such conditions within a model based on the supported features. The

grouping is provided by the first line of the condition string which shall contain the name of the

group; i.e., all condition strings of the UML artifacts which share the same condition have the

TR-514 UML Modeling Guidelines Version 1.3

Page 53 of 84 © Open Networking Foundation

same text in their first line. The second and further lines may contain an explanation of the

condition.

Figure 5.55: Conditional Class Example

Figure 5.56: Conditional Attributes Example

5.11 Use Cases

Use case diagrams define actors in a system and the defined behavior over a specific interface.

The actor is the entity that is invoking the behavior over the interface. In the diagram below, the

actor is a stick figure representing a business application that is given a ñnameò which shall be

specified in Upper Camel Case (UCC). The use cases, or the defined behavior invoked over an

interface, are defined in the ñovalsò and specified in their ñnamesò in Upper Camel Case (UCC)

also. The tabular format which defines the input, output, description, etc. of a use case is only

found in the Interface Profile Specification and is not present in the UML model.

