
NEM Management
Service Lifecycle, Upgrades, API, and Tools

Scott Baker
Zack Williams

What is the NEM ?

“Network Edge Mediator”
• Interfaces operator OSS to SEBA

services

• FCAPS

• Lifecycle management

• Pods are long-lived

• Pods are dynamic

• Dynamic -> Extensibility

• New services

• New workflows

2

The NEM Manages the pod

• NEM has configuration and authoritative state for many
services
• ONOS Apps
• Subscribers
• OLT and ONU admin state

• Manage the POD --> Manage the NEM

3

Managing the NEM ...

• Service Management
• Service A needs to work with Service B
• Abstractions may span A and B
• Northbound consumers want a unified

abstraction.
• Container Management

• Deploy on hardware
• Scheduling
• Redeploy/migrate if hardware fails

• Upgrade, Backup/Restore, …
• Span Container & Service Management

4

}
} Docker,

Kubernetes,
Helm

XOS

Presenting a unified NEM interface

Why do we unify?
• Provide coherent interface to collection of disaggregated components

• Tools to avoid NxM scenario (N northside masters and M components)

Where do we unify?
• We created a component called “XOS”

• XOS presents a single gRPC interface northbound for operations

• XOS allows services to be plugged in southbound

5

NEM (XOS)

Use Cases
(Trials)

Extensible
Platform

Building
Blocks

Unified Data Model – Integrate Across Components

VOLTHA xRAN Fabric vEPC vRouter …

Drilling down into XOS

• Macro architecture / Containerization

• XOS Core architecture

• XOS Data model architecture

7

XOS Macro Architecture

8

XOS Core

Chameleon

DB

VOLT

Fabric

Fabric-XC

Subscriber ONOS

TOSCA

Kubernetes Workflow

Northbound Management Interface

Service Independent
Code and Models

Service Specific
Code and Models

gRPC

REST
other

XOS Core Architecture

9

gRPC
Server

Data
Model

xproto
model
decls

Database
Backend DB

Logging
Kafka Bus

Security

Notify

The XOS Data Model

10

Relational Database
• Based on Django

Base Models (stuff you get for free)
• Users and Permissions

• Compute and Network Resources

• Services, Tenancy, and Dependencies

• Chains

Extensibility (value you can add)
• Any service can add new models

• Service models can inherit from base models

Data Model Example (VOLT Service)

11

VOLT
Service

VOLT
ServiceInstance OLT

Device

PON Port

NNI Port

ONU
Device

UNI Port

RCORD
Service

Fabric XC
Service

Fabric XC
ServiceInstance

RCORD
Subscriber

Data Model Description Language (xproto)

12

"xproto", the XOS data modeling language
• Based on Google Protobuf, extended with relational features

• Used to autogenerate various targets (REST, GUI, etc)

• Make a change in one place, not six different places

gRPC API
gRPC API

volt.xproto xosgenx
gRPC API REST API

Data
Model

GUI

CLI

xproto example

13

message ONUDevice (XOSBase){
 option verbose_name = "ONU Device";
 option description = "Represents a physical ONU device";

 required manytoone pon_port->PONPort:onu_devices = 1:1001 [];
 required string serial_number = 2 [max_length = 254, tosca_key=True, unique = True];
 required string vendor = 3 [max_length = 254];
 required string device_type = 4 [help_text = "Device Type", default = "asfvolt16_olt",
max_length = 254];

 optional string device_id = 5 [max_length = 254, feedback_state = True];
 optional string admin_state = 6 [choices = "(('DISABLED', 'DISABLED'), ('ENABLED', 'ENABLED'))",
default="ENABLED", help_text = "admin_state"];
 optional string oper_status = 7 [help_text = "oper_status", feedback_state = True];
 optional string connect_status = 8 [help_text = "connect_status", feedback_state = True];
}

The Data Model evolves over time

14

Service stack changes over time
• New services may be added

• Old services may be removed

• Existing services may be upgraded

• New models

• New fields to existing models

The data model will change over time
• New/updated xproto from the developers

• Service upgrades commanded by the operators

• How does the core handle this?

Data Model Migration

15

Migrate the schema - structural changes

• Add models or fields

• Delete models or fields

• Rename models or fields

• Change the type of a field

Migrate the live data

• Semantic transformation

• Example:

• ModelV1 has fields (first_name, last_name)

• ModelV2 has fields (name)

• Someone has to implement: v2.name = v1.first_name + “ “ + v1.last_name

How XOS implements migration

16

We leverage Django’s built-in migration support

• Uses python-based migration scripts

• Supports both schema and data migration

Developers write migration scripts by hand

• We wrote a tool called `xos-migrate` to do most of the work

• Developers only need to manually write the complex parts as necessary

Upgrade is driven by Synchronizers

• Synchronizer supplies models and migration scripts

• XOS-core stops, runs migration scripts automatically, and restarts

• All synchronizers receive the new models

Service Lifecycle: Adding a Service

17

How do we bring up a new service?
• Service deploys a new synchronizer
• Synchronizer registers service models

and migrations with XOS core

• XOS core stops

• XOS core migrates the data model

• XOS core restarts

• XOS core pushes new data model to all
synchronizers

• Synchronizers begin serving requests

New
Synchronizer

Register

Updated
Data Model

XOS
Core

Synchronizers
A, B, C, ...

Synchronizers
A, B, C, ...

Synchronizers
A, B, C, ...

Updated
Data Model

Service Lifecycle: Upgrading a Service

18

How do we upgrade a service?
• Service destroys old synchronizer
• Service deploys a new synchronizer

• Synchronizer registers updated service
models and migrations with XOS core

• XOS core stops

• XOS core migrates the data model

• XOS core restarts

• XOS core pushes new data model to all
synchronizers

• Synchronizers begin serving requests

New
Synchronizer XOS

Core

Register

Updated
Data Model

Old
SynchronizerX

Synchronizers
A, B, C, ...

Synchronizers
A, B, C, ...

Synchronizers
A, B, C, ...

Updated
Data Model

Service Lifecycle: Deleting a Service

19

How do we delete a service?
• Service calls “UnloadModels” API
• XOS deletes any live objects from data

model
• Service destroys synchronizer

• XOS core stops

• XOS core migrates the data model

• XOS core restarts

• XOS core pushes new data model to all
synchronizers

• Synchronizers begin serving requests

New
Synchronizer XOS

Core

Unload
Models

Delete Live
Objects

Synchronizers
A, B, C, ...

Synchronizers
A, B, C, ...

Synchronizers
A, B, C, ...

Updated
Data Model

X

Leveraging Helm and Kubernetes

SEBA launches all its services in containers hosted on Kubernetes

Services are packaged into Helm Charts

Helm natively supports upgrades of charts:

$ helm upgrade att-workflow workflows/att-workflow \

 --set att-workflow-driver.image.tag=<new_version>

Release "att-workflow" has been upgraded.

Helm Upgrade process

The Helm side of the upgrade process is straightforward -
terminate the old service pod, start the new one

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE

att-workflow-att-workflow-driver-6cdb76cbc9-qxsbp 1/1 Running 0 80s

att-workflow-att-workflow-driver-db478b467-fpxh6 0/1 Terminating 0 23m

XOS handles the internal details of the service upgrade

"Boring and uneventful" is ideal in this case.

Live Demo - Cordctl

22

We’re going to conclude with a demo of `cordctl`

• CLI tool for managing the NEM via XOS

• List the service inventory

• Inspect/create/update/delete models

• Perform backup/restore

Demo script 1 - Help and Service Inventory

23

show the config file

cat ~/.cord/config

retrieve server version / ensure connectivity

cordctl version

show brief help

cordctl

show detailed help

cordctl -h

view the service inventory

cordctl service list

Demo script 2 - Inspecting Models

24

List types of models

cordctl modeltype list

List user models

cordctl model list User

List users in a more concise format

cordctl model list User --format="table{{.id}}\t{{.email}}"

Create a user

cordctl model create User --set-field firstname=John,lastname=Doe,email=john@doe.com,site_id=1

Update a user

cordctl model update User 2 --set-field phone=111-222-3333

Show our update was successful

cordctl model list User --format="table{{.id}}\t{{.email}}\t{{.phone}}"

Delete user

cordctl model delete User 2

Tour of the data model -- If time permits, show some other interesting models

cordctl model list RCORDSubscriber --format="table{{.id}}\t{{.name}}\t{{.c_tag}}\t{{.s_tag}}\t{{.onu_device}}"

cordctl model list ONUDevice

cordctl model list OLTDevice --format="table{{.id}}\t{{.dp_id}}\t{{.serial_number}}\t{{.host}}\t{{.admin_state}}"

cordctl model list AttWorkflowDriverServiceInstance

mailto:john@doe.com

Demo script 3 - Backup and Restore

25

Create a backup

cordctl backup create mybackup.raw

Restore a backup

cordctl backup restore mybackup.raw

