
OMEC Development and Deployment

Lyle Bertz
Sprint

OMEC Development and Deployment

• OMEC Repositories
• Deployment Use Case – Edge Gateway
• Development of the Edge Gateway

OMEC Network Function Repositories

Control Plane (CP)

PDN(s)

HSS

OpenMME

Data Plane (DP)

CDR
Router

CTF

PCRF

C3PO

NGIC-RTC

Single Frame (1 instance of each component)
40K Users
1K Control Plane TPS
42-80 CPU Cores

Apache
Cassandra

LEGEND
Currently available
Currently available (& unidirectional)
Work in progress

Deployment Use Case – Edge Gateway

Edge Gateway Use Case
• Description – Provide an EPC based SAEGW that select the closest data termination (Edge Site) for

a user

• Constraints

- Minimal impact to existing production systems

- No upgrades to eNodeBs

- No changes to Tracking Area configurations

- Support dynamic and operator assigned edges

• Accomplished with

- TAI DNS server

- eNodeB-ID DNS server

- topon – Colocation determination – standard process in 3GPP

• Solution maintains 3GPP compliance while supporting all scenarios

SGW-C DNS Queries

MME SGW-CS11 Create Session Request - IMSI, MSISDN, …, PDN GW address, PDN
Address, APN, …, User Location Information (ECGI and TAI), …

TAI DNS

eNodeB-ID DNS

eCGI contains eNodeB-Id, MCC,
MNC

tac-lb<TAC low byte>.tac-hb<TAC high
byte>.tac..epc.mnc<MNC>.mcc<MCC>.3gppnetwork.org

enb<eNodeB-ID>.enb.epc.mnc<MNC>.mcc<MCC>.3gppnetwork.org

The SGW will resolve the responses to an IP Address

Scenarios

Edge

Centralized
Data Center

Scenario 1 - TAI with no Edge sites
Uses TAC Query Data (Business as usual)

Scenario 2 - TAI with single Edge site
Uses TAC Query Data

Edge

Edge
Scenario 3 - TAI with multiple Edge
sites
Uses eNodeB Query Data

Centralized
Data Center

Centralized
Data Center

Simple logic: SGW-C queries both eNodeB and TAC.

If no eNodeB query answer is the response, TAC Query data is used.
Scenarios 2 & 3 have a “fallback” to the Centralized Data Center.

SGW Query – More Detail

At the SAEGW-C
1. Receive S11 CSR with ULI including eNodeB-ID and APN.
2. Determine role of the gateway (SGW, SAEGW or PGW) for APN. (This determines the UPF

interfaces we are looking for – Sxa and Sxb or merely Sxa)
3. Following TS 29.244 (Sx spec) for UPF Sx selection by both eNodeBID and TAI (this includes

topological colocation if indicated per TS 29.303).
1. eNodeB query goes to App DNS*.
2. TAI query goes to existing iDNS*.

4. If no eNodeBID record is returned, keep this fact in memory. Otherwise use the eNodeB query
data.

5. Select the UPF via the iDNS TAI data and keep processing.

* - This assumes that the DNS cache does not already have a valid query present.

Development to Support the Use Case

Current Development

• Focus is on NGIC-RTC and
supporting repositories

• Deployment-VMs (our
production systems use
OpenStack and VMs) but use of
Container is not a major
concern

• New pattern and Construction
Techniques development used

Function
• GTP-C
• PFCP
• Diameter
• All Stage 2 (TS 23.401) S11 GTP with GTP

mobility procedures can be supported
• OAM
• Restoration and Recovery (TS 23.007)

Construction Techniques
• Stack Pattern
• Auto-generated protocol structures from the

specifications directly
• State Machine Pattern
• OAM Patterns

Architecture Pattern – Control Plane

Protocol
Interface

Event
Dispatcher

Event
Handler

Session Context

Information

Protocol
Decode1

• UE Context lookup (as required)
• Event + State maps to function
• Check Preconditions (Guard for transition)

Decoded
Information

Event ID

Read

Decoded
Information2

Next Action

Read

Common (Cross Protocol)
State Machine

UE, Peer or Interface
Procedures
Can follow Stage 2
procedure and/or
protocol procedure

Protocol
InterfaceData To

Encode

outbound protocol
messagesCreate

or
Update

Timer Manager

NOTES
1 – Decode does NOT occur for FreeDiameter or fired Timers
2 - May not always be present, e.g. retransmission

S11, S5/S8, Sx,
FreeDiameter,
Timers (fired), CLI,
SBA/RESTful (future)

Timer Mgt
• Register (Compound Key – includes UE or TEID, callback,

timeout/time to expire)
• Deregister(Key)
• Relevant data, e.g. Message to retransmit, is in the Context

UNIX_FD (UNIX Domain Socket) Timer Queue

Peer Context

Interface Context

OM
Publication

Read

Activity
LEGEND

inbound protocol
messages

Text in BOLD – Code Stubs that must be customized

• Maps Protocol Context
to Event

• Extracts Context lookup
info

Update
(Function,

Proposed State)

• Contexts include Metrics
• System Context is catch all for date that does not fit in other contexts

System Context

CLI
Config

Protocol
Encoder

Packet

Message Library

Packet

Message Library

Command

Architecture Pattern – Existing Stack Reuse

Considerations: Would Multiple Diameter Applications ever result in multiple UNIX_FD socket
in each direction?

1 – Message is not decoded but the Event is assigned
Cross Message (Request / Answer) checking can take place

Free
Diameter
Protocol
Decode

Message
Handler

Freediameter

Protocol
Interface

Precondition
Check

Note: Decode is skipped in CP since FreeDiameter has already decoded

Protocol
Handler

Protocol
Interface

UNIX_FD
(UNIX Domain Socket)

UNIX_FD
(UNIX Domain Socket) Protocol

Decode1

Free
Diameter
Protocol
Encode

Message
Sender

Session Context

Peer Context

Stack Layer - Pattern

Reliability of Message Delivery Peer / Application
Endpoint Path Failure Detection Peer
Piggyback messages Peer / Application
Protocol Errors Peer
Unsupported Versions Peer
Message Invalid Length Peer / Application
Unknown Message Peer
Unexpected Message Application
Missing Information Element Application
Invalid Length Information Element Peer / Application
Semantically Incorrect Information
Element Application
Unknown or Unexpected Information
Element Application
Repeated Information Elements Application
Common Structure Error Handling1 Application
Detection of Peer Reset Peer (standard) / Application (possible)

1 - Protocol specific

Services GTP-C Layer

Application

Peer

Transport

Layers

Summary

Purpose - Provide an EPC based SAEGW that selects the closest data termination (Edge Site) for a user in
NGIC-RTC

Approach - We’re working with design patterns and a common approach

Focus
• Edge Gateway Use case and impacted component
• Compliance to specifications
• Improving the way we develop and test the code for quick, efficient repeatability

Timeline - Code delivery this year but acceptance of delivery, testing and verification and readiness to
release to OMEC will take time

How to Engage with Community

• On Github - https://github.com/omec-project

• Weekly Meetings - POC
• TST - Oguz Sunay oguz@opennetworking.org
• Architecture|Design|Engineering - Pingping Lin

pingping@opennetworking.org

https://github.com/omec-project
mailto:oguz@opennetworking.org
mailto:pingping@opennetworking.org

Thank You

Follow Up Links:
https://github.com/omec-project

https://github.com/omec-project

