s OOM—

DMNMNECT

A Workflow Management Engine
in CORD

lllyoung Choi
iychoi@email.arizona.edu
University of Arizona

A Workflow?

This differentiates a workflow
from a general program

Is a series of tasks in order to accomplish a repeatable

business objective with details on when, how and what work is to

be done.

Task = (When = How = What)
= (Event = Action = Result)

S£.OMFE

COoOMMeEec

Current Workflows in CORD

/" AT&T Workflow /' R-CORD Service

Implemented as a XOS P P PR

Synchronizer c o & Erot
Data-models (data) l Coo
Model-policies v o) :: Data
(model-event handlers) Service 07
Event-steps Hpiei e e umgger

Model /:/

(external-event handlers) u S o~

Event handlers define 5% ot Polcies

—p Path #1 Model : 7
when, how, and what o Path #2 " ¥ |
A container per workflow

Execution Flow of AT&T Workflow
Two execution paths
inter-workflow calls (dot arrows)

Scalability & Isolation

S.OMF

COMMECc

Difficulties & Limitations

Development
Inconsistent technologies & interfaces for event-handling
Seemingly fragmented codes
Manual workflow state management
Possible race conditions & loops

Management
Difficult to understand execution flows & relations
Difficult to monitor workflow state

£.OMF

COMM&EC

Execution Flow At First Glance

ﬂT&T Workflow

ONU
Event
Step

AUTH
Event
Step

ATT
Service
Instance
Data
Model

l trigger

Model
Policy

DHCP
Event
Step

\

SoOoMN=

comnmecT

CORD Services

.

OMOss

Event-ste

i external-events

0s vs. Model-policies
Data-models

Periodic | | |

check for _—

updates | N

(5 sec) /00 \I

(internal events)

W

/ ‘ \ Mmodel-events
/

=

~

/EventStep | Model-Policy
class ONUEventStep(EventStep): i ' class AttWorkflowDriverServicelnstancePolicy(Policy):
topics = ["onu.events"] model_name = "AttWorkflowDriverServicelnstance"
technology = "kafka" ‘
' def handle_create(self, si):
def __init__(self, *args, **kwargs): ‘
super(ONUEventStep, self).__init__(*args, '
**kwargs) \ def handle_update(self, si):
def process_event(self, event): \ MOdeI I
value = json.loads(event.value) . def handle_delete(self, si):
Policy
N J A\ J
9,
O]
e OM—
comnmecT

Race Conditions

: Workflow #1
Event Data Model ~ Data « _ Model
Step Model Policy Model Policy
‘ Workflow #2 N
Event Data Model
Step Model Policy
| Race
N / Condition
s -~
[Workflow #3 / ' 0
Event Data Model | Data Model
Step Model Policy Model Policy

Possibly...

Loops

a Workflow #1 N
Event Data ~ _~ Model =~ Data _ Model
Step Model Policy Model Policy
A /
(Workflow #2
Event Data Model
Step Model Policy
v
yd
(" Workflow #3 / N
Loop
o e — s
Step Model Policy Model Policy S =

o=

comnmecT

The Pilot Engine

* Based on Apache Airflow
* An open-source workflow management platform by Airbnb

* Development
* Simple & consistent event-handler interfaces
* Execution flow is clearly described

* State management Airflow
* Can avoid race conditions using Pools (like mutex)
* Can find loops via graphs
* Management
* Visualize state, flows and relations of workflows
* Scalable (using kubernetes/celery)
LoMNE

conmnmec

Design of the Pilot Engine

o3& .
(((‘ R [Workflow (subscriber) Interface } /_a_\ /_‘_\

\

CO R D® Workflow Workflow
#1 #2
- e
4 ! I
[Probe (producer) Interface }

- K Airflow /
Probes } { Workflow Controller } { Airflow Extensions }
oM~

9 comnmecT

Workflow Controller

Bridge the gap between CORD and Airflow
OLTP (Online Transactional Processing)
vs. OLAP (Online Analytical Processing)
OLTP = Short transactions (e.g., CRUD)
OLAP = Periodical batch processing (e.g., Hadoop analysis)
Run a transaction as a workflow instance

Workflow management

Launch new workflow instances
Monitor state of workflow instances

Event routing
Route events to workflow instances

£.OMF

COMM&EC

Code Changes
When & how What
/_\ = ? N
/ -. onu_event_sensor = CORDEventSensor(W

Event _ ' Data task_id='onu_event_sensor’,

Step Model topic="onu.events’',
key_field='serialNumber",
controller_conn_id='local_cord_controller’,

OR : _
poke_interval=5,
dag=dag_att

Model » 1 Data)
Policy Model
\ / onu_event_handler = CORDModelOperator(How
- - task_id='onu_event_handler’,

python_callable=on_onu_event,
data_models=[’ATTServicelnstanceModel’];

cord_event_sensor_task_id='onu_event_sensor’, What
Ve ~) dag=dag_att
Event Model Data
>>
Sensor —> Operator — Model onu_event_sensor >> onu_event_handler

\.

Explicit flow definition
Wh H Wh .
en ow at LoNn—

comnmecT

XOS Synchronizer

/AT&T Workflow \
ONU AUTH DHCP
Event Event Event
Step Step Step
l update
ATT
Service ’,
update '“g:t';“ L5’
Model v
‘vz
. Ll
ll trigger ey
‘vz
‘vz
+ 4 7 update
—p Path #1 Model : 7
—» Path #2 Policy — »
AN /)

Designh Changes

O\
[R-CORD Service |
aamm

« Data

, ¥ Wodels’

e

v

trigger

Model
Policies

\ /

o /

The Pilot Engine

-
AT&T Workflow
_ ATT
ONU trigger — update ' Service
Event —p ——p Instance I e
Sensor Operator Data [WEREE !
Model | :
1 |
e e e e e e = * |
* | :
AUTH 99T o update ar : "
Event o — i
Sensor Operator B5E | !
Model | 1
I | I :
o — - J
g : :
DHCP| 99" g g update ar ! X
Sivne:;r P> _Operator P Data 1 !
Model 1 1
1 | :
. 1
A\ J |
1
AT&T Admin Workflow |
|
update AsT'T trigger ~ Model trigger Model :
—-UrP— \x" —> Operator. |~
Model Sensor

C 0\
R-CORD Service |

—

-— | RCORD
\

/

Data

*trigger
(Eﬁ;de\
vent

Ser\soys

ltrigger
rJ_ -
))pera rs

o=

comnmecT

Monitoring

® O ® ¥ Airflow - DAGs x +
e 9 (-\- A St " N - .
® O ® ¥ airflow - DAGs x 4+
4+ Airflg i 2 :
& C @ localhost:8080/admin/airflow/tree?dag_id=att_workflow e 0O . :
N [NN] i -
7 Airflow R Airflow - DAGs x +
DAG‘ & C @ localhost:8080/admin/airflow/graph?dag_id=att_workflow&execution_date= « 0O . :
2+ Airflow Gs DataProfiing~ Browse~ Admin~ Docs~ Abo 2019-08-21 16:57:
BY) DAG: I
|
[:]
| # Graph View
|
¢ B DAG: att_workflow

4 Code T Refresh @ Delete

@ B Basedate: | #* Graph View ® Tree View olt Task Duration) Task Tries A Landing Times £ Gantt

G On
@ corDEventsens ~ Example AT&T workflow using Airflow
G
(e} On Base date: 2019-08-21 16:57:14 Number of runs: 25 4 Run: 4 Layout: | Left->Right % Go Search for...
Qipag]
@ s ovor (CONDERSHES) CORNGHORED S]
« | < I @ dhep_¢

%
Hide Pause

.

o=

13 comnmecT

Limitations

Performance Relre]]tettj t(: Aifrflov(;’z /’;?;get market, “an
i . - orchestrator for
Slow polling-based event detection™
. OLAP
Slow task schedulin g * (Online Analytical Processing):
S c3 I 3 bl I Ity periodic, long-running batch jobs

Single point of failure

Unscalable Airflow Ul (Web admin)*
Usability

Annoying workflow registration

Annoying restriction in programming

(e.g., a single python file per a workflow)

£.OMF-

COMM&EC

Future Workflow Management Engine in CORD

Best assets of the pilot engine
Simple & consistent event handlers
Simple state management & flow control
Task scheduling using Pools to avoid race conditions
Visualizations for monitoring

Supplementary features to the pilot engine
Automated loop detection & race condition
Fast event detection (event-driven or short polling period)
Fast task-scheduling
High availability & Scalability
A container per workflow (Like XOS Synchronizer)
Simple workflow registration at runtime
Workflow code packaging for deployment

£.OMF

COMMEC

Best of Both Worlds

XOS Synchronizer

* Separation of concerns

The Pilot Engine
* Explicit and connected
concerns

O M=

MMM ECT

Thank You

