P4, Portable Switch Architecture (PSA)

Version 1.1

The P4.org Architecture Working Group
November 22, 2018

Abstract

P4 is a language for expressing how packets are processed by the data plane of a programmable
network forwarding element. P4 programs specify how the various programmable blocks of a
target architecture are programmed and connected. The Portable Switch Architecture (PSA) is
a target architecture that describes common capabilities of network switch devices that process
and forward packets across multiple interface ports.

Contents
1. Target Architecture Model 3
2. Naming conventions 4
3. Packet paths 5
4. PSA Data types 7
4.1. PSA type definitions 7
4.2. PSA supported metadata types 8
4.3. Match kinds oL 10
4.4. Data plane vs. control plane data representations 10
5. Programmable blocks 12
6. Packet Path Details 14
6.1. Initial values of packets processed by ingress 14
6.1.1. Initial packet contents for packets from ports 14
6.1.2. Initial packet contents for resubmitted packets 15
6.1.3. Initial packet contents for recirculated packets 15
6.1.4. User-defined metadata for all ingress packets 15
6.2. Behavior of packets after ingress processing is complete 15
6.2.1. Multicast replication L 18
6.3. Actions for directing packets during ingress L. 18
6.3.1. Unicast operation L L 18
6.3.2. Multicast operation L 19
6.3.3. Drop operation L 19
6.4. Initial values of packets processed by egress L. 19
6.4.1. Initial packet contents for normal packets L. 19
6.4.2. Initial packet contents for packets cloned from ingress to egress 20
6.4.3. Initial packet contents for packets cloned from egress to egress 20
6.4.4. User-defined metadata for all egress packets 20
6.4.5. Multicast and clone copies L o 21
6.5. Behavior of packets after egress processing is complete 21
6.6. Actions for directing packets during egresso 23
6.6.1. Drop operation L L 23
6.7. Contents of packets sent out toports Lo 23
6.8. Packet Cloning e 23
6.8.1. Clone Examples e 24
6.9. Packet Resubmission L L 25
6.10. Packet Recirculation 26
7. PSA Externs 26
7.1. Restrictions on where externs may beusedo 26
7.2. PSA Table Properties L 28
7.2.1. Table entry timeout notification oL L. 28
7.3. Packet Replication Engine L oo 29
7.4. Buffering Queuing Engine oL L oL 30
7.5. Hashes o L e 30
7.5.1. Hash function 30
2018-11-22 12:44 P46 Portable Switch Architecture 2

1. TARGET ARCHITECTURE MODEL

7.6. Checksums e 31
7.6.1. Basic checksum L 31

7.6.2. Incremental checksumo oo 31

7.6.3. InternetChecksum examples Lo 32

T.7. Counters e e 37
7.7.1. Counter types o oo 37

7.7.2. Counter L 38

7.7.3. Direct Counter L 38

7.7.4. Example program using counters oL c oL 39

7.8. Meters oL 40
7.8.1. Meter types L 42

7.8.2. Meter colors 42

7.8.3. Meter e 42

7.8.4. Direct Meter L 43

7.9. Registers e 43
7.10. Randomo e 45
7.11. Action Profile 46
7.11.1. Action Profile Example 47

7.12. Action Selector 48
7.12.1. Action Selector Example L o 50

7.13. Timestamps e e e 50
7.14. Packet Digest L 52

8. Atomicity of control plane API operations 55
A. Appendix: Open Issues 56
A.1. Action Selectorso 56
A.2. Observation and control of congestion 56
A.3. Enabling full implementation of In-band Network Telemetry 56
A4, PSA profiles 57
B. Appendix: Implementation of the InternetChecksum extern 57
C. Appendix: Example implementation of Counter extern 58
D. Appendix: Rationale for design 99
D.1. Why egress processing? e e e e 59
D.2. No output port change during egress 60
D.3. Ingress deparser and egress parsero e e e 61

E. Appendix: Multi-pipeline PSA devices 61
F. Appendix: Packet ordering 63
G. Appendix: Supporting empty action selector groups 65

1. Target Architecture Model

As an analogy, the PSA is to the P4;4 language as the C standard library is to the C programming
language. PSA defines a library of types, P44 externs for frequently used constructs such as counters,
meters, and registers, and a set of “packet paths” that enable you to write P4 programs that control
the flow of packets in a packet switch that has multiple ports, e.g. dozens of Ethernet ports. By
following the APIs and guidelines here, developers will be able to write P4 programs that are portable
across many devices that are conformant to the PSA.

While parts of PSA are specific to network switches, and a “Portable NIC Architecture” (if such a
thing is developed) would differ significantly from PSA in those parts, we expect the externs defined
here will be of general use across multiple P44 architectures.

The Portable Switch Architecture (PSA) Model has six programmable P4 blocks and two fixed-
function blocks, as shown in Figure 1. The behavior of the programmable blocks is specified using

2018-11-22 12:44 P46 Portable Switch Architecture 3

2. NAMING CONVENTIONS

P4. The Packet buffer and Replication Engine (PRE) and the Buffer Queuing Engine (BQE) are
target dependent functional blocks that may be configured for a fixed set of operations.

Packet Buffer
Parser Ingress Deparser Buffer and Parser Egress Deparser Queueing
Replication Engine

Figure 1. Portable Switch Pipeline

Incoming packets are parsed and validated, and then passed to an ingress match action pipeline,
which makes decisions on where the packets go. The ingress deparser P4 code specifies the packet
contents to be sent to the packet buffer, and what metadata related to the packet is carried with
it. After the ingress pipeline, the packet may optionally be replicated (i.e. copies made to multiple
egress ports), then stored in the packet buffer.

For each such egress port, the packet passes through an egress parser and match action pipeline
before it is deparsed and queued to leave the pipeline.

A programmer targeting the PSA is required to define objects in P4 for the programmable blocks
that conform to APIs defined later (see section 5). The programmable block inputs and outputs are
templatized on user defined headers and metadata. Once these six blocks are defined, a P4 program
for PSA instantiates the main package object, with the programmable blocks passed as arguments
(see Section 7.3 for an example).

A P4 programmer wishing to maximize the portability of their program should follow several
general guidelines:

e Do not use undefined values in a way that affects the resulting output packet(s), or for side
effects such as updating Counter, Meter or Register instances.

e Use as few resources as possible, e.g. table search key bits, array sizes, quantity of metadata
associated with packets, etc.

This document contains excerpts of several P44 programs that use the psa.p4 include file and
demonstrate features of PSA. Source code for the complete programs can be found in the official
repository containing the PSA specification®.

2. Naming conventions

In this document we use the following naming conventions:

e Types are named using CamelCase followed by _t. For example, PortId_t.

e Control types and extern object types are named using CamelCase. For example
IngressParser.

e Struct types are named using lower case words separated by _ followed by _t. For example
psa_ingress_input_metadata_t.

e Actions, extern methods, extern functions, headers, structs, and instances of controls and
externs start with lower case and words are separated using _. For example send_to_port.

e Enum members, const definitions, and #define constants are all caps, with words separated
by _. For example PSA_PORT_CPU.

Architecture specific metadata (e.g. structs) are prefixed by psa_.

Thttps://github.com/p4lang/pa-spec in directory p4-16/psa/examples. Direct link: https://github.com/
p4lang/p4-spec/tree/master/p4-16/psa/examples

2018-11-22 12:44 P46 Portable Switch Architecture 4

https://github.com/p4lang/p4-spec
https://github.com/p4lang/p4-spec/tree/master/p4-16/psa/examples
https://github.com/p4lang/p4-spec/tree/master/p4-16/psa/examples

3. PACKET PATHS

Abbreviation | Description Packet Source Packet Destination

NFP normal packet from port port ingress parser

NFCPU packet from CPU port CPU port ingress parser

NU normal unicast packet ingress deparser egress parser
from ingress to egress

NM normal multicast-replicated | ingress deparser, egress parser (more than
packet from ingress to egress | with help from PRE | one copy is possible)

NTP normal packet to port egress deparser port

NTCPU normal packet to CPU port | egress deparser CPU port

RESUB resubmitted packet ingress deparser ingress parser

CI2E clone from ingress to egress | ingress deparser egress parser

RECIRC recirculated packet egress deparser ingress parser

CE2E clone from egress to egress egress deparser egress parser

Table 1. Packet path abbreviation meanings.

3. Packet paths

Figure 2 shows all possible paths for packets that must be supported by a PSA implementation. An
implementation is allowed to support paths for packets that are not described here.

NU,
NFP NM NTP
NFCPU NTCPU
Ingress | | Ingress |- Ingress | ci2E Packet Egress | | Egress | Egress
Parser Deparser » Buffer Parser Deparser
’—' RESUBMIT 4»‘ ’_’ CE2E 4>‘
RECIRCULATE

Figure 2. Packet Paths in PSA

Table 1 defines the meanings of the abbreviations in Figure 2. There can be one or more hardware,
software, or PSA architecture components between the “packet source” and “packet destination”
given in that table, e.g. a normal multicast packet passes through the packet replication engine and
typically also a packet buffer after leaving the ingress deparser, before arriving at the egress parser.
This table focuses on the P4-programmable portions of the architecture as sources and destinations
of these packet paths.

Table 2 shows what can happen to a packet as a result of a single time being processed in ingress,
or a single time being processed in egress. The cases are the same as shown in Table 1, but have
been grouped together by similar values of “Processed next by”.

There are metadata fields defined by PSA that enable your P4 program to identify which path
each packet arrived on, and to control where it will go next. See section 6.

For egress packets, the choice between one of multiple egress ports, the port to the CPU, or the
“recirculation port”, is made by the immediately previous processing step (ingress for NU, NM, or
CI2E packets, egress for CE2E packets). Egress processing can choose to drop the packet instead
of sending it to the port chosen earlier, but it cannot change the choice to a different port. Ingress
code is the most common place in a P4 program where the output port(s) are chosen. The only
exception to ingress choosing the output port is for egress-to-egress clone packets, whose destination
port is chosen when the clone is created in the immediately preceding egress processing step. See
section D.2 for why this restriction exists.

2018-11-22 12:44 P4, Portable Switch Architecture

3. PACKET PATHS

Processed Resulting
Abbreviation | Description next by packet(s)
NFP normal packet from port At most one CI2E packet,
NFCPU packet from CPU port ingress plus at most one of a
RESUB resubmitted packet RESUB, NU, or NM packet.
RECIRC recirculated packet See section 6.2 for details.
NU normal unicast packet At most one CE2E packet,
from ingress to egress plus at most one of a
NM normal multicast-replicated | egress RECIRC, NTP, or NTCPU
packet from ingress to egress packet.
CI2E clone from ingress to egress See section 6.5 for details.
CE2E clone from egress to egress
NTP normal packet to port device at other | determined by the
end of port other device
NTCPU normal packet to CPU port | CPU determined by CPU

Table 2. Result of packet processed one time by ingress or egress.

A single packet received by a PSA system from a port can result in 0, 1, or many packets going
out, all under control of the P4 program. For example, a single packet received from a port could
cause all of the following to occur, if the P4 program so directed it:

e The original packet received as NFP from port 2. Ingress processing creates a CI2E clone
destined for the CPU port (copy 1), and a multicast NM packet to multicast group 18, which
is configured in the PacketReplicationEngine to have copies made to ports 5 (copy 2) and the
recirculate port PSA_PORT_RECIRCULATE (copy 3).

e Copy 1 performs egress processing, which sends the packet on path NTCPU to the CPU port.

Copy 2 performs egress processing, which creates a CE2E clone destined for port 8 (copy 4),

and sends a NTP packet to port 5.

Copy 3 performs egress processing, which does a RECIRC back to ingress (copy 5).

Copy 4 performs egress processing, which sends a NTP packet to port 8.

Copy 5 performs ingress processing, which sends a NU packet destined for port 1 (copy 6).

Copy 6 performs egress processing, which drops the packet instead of sending it to port 1.

This is simply an example of what is possible given an appropriately written P4 program. There is
no need to use all of the packet paths available. The numbering of the packet copies above is only for
purposes of distinctly identifying each one in the example. The ports described in the example are
also arbitrary. A PSA implementation is free to perform the steps above in many possible orders.

There is no mandated mechanism in PSA to prevent a single received packet from creating
packets that continue to recirculate, resubmit, or clone from egress to egress indefinitely. This can
be prevented by suitable testing of your P4 program, and/or creating in your P4 program a “time
to live” metadata field that is carried along with copies of a packet, similar to the IPv4 Time To
Live header field.

A PSA implementation may optionally drop resubmitted, recirculated, or egress-to-egress clone
packets after an implementation-specific maximum number of times from the same original packet. If
so, the implementation should maintain counters of packets dropped for these reasons, and preferably
record some debug information about the first few packets dropped for these reasons (perhaps only
one).

2018-11-22 12:44 P46 Portable Switch Architecture 6

4. PSA DATA TYPES

4. PSA Data types

4.1. PSA type definitions

Each PSA implementation will have specific bit widths for the following types in the data plane.
These widths are defined in the target specific psa.p4 include file. They are expected to differ from
one PSA implementation to another?.

For each of these types, the P4 Runtime API° may use bit widths independent of the targets.
These widths are defined by the P4 Runtime API specification, and they are expected to be at least
as large as the corresponding InHeader_t type below, such that they hold a value for any target.
All PSA implementations must use data plane sizes for these types no wider than the corresponding
InHeader_t-defined types.

~
*

These are defined using ‘typedef‘, not ‘type‘, so they are truly
just different names for the type bit<W> for the particular width W
shown. Unlike the ‘type‘ definitions below, values declared with
the ‘typedef‘ type names can be freely mingled in expressions, just
as any value declared with type bit<W> can. Values declared with
one of the ‘type‘ names below _cannot_ be so freely mingled, unless
you first cast them to the corresponding ‘typedef‘ type. While
that may be inconvenient when you need to do arithmetic on such
values, it is the price to pay for having all occurrences of values
of the ‘type‘ types marked as such in the automatically generated
control plane API.

¥ X X X X X X X X X ¥ ¥

Note that the width of typedef <name>Uint_t will always be the same
* as the width of type <name>_t. */

typedef bit<unspecified> PortIdUint_t;

typedef bit<unspecified> MulticastGroupUint_t;

typedef bit<unspecified> CloneSessionIdUint_t;

typedef bit<unspecified> ClassOfServiceUint_t;

typedef bit<unspecified> PacketLengthUint_t;

typedef bit<unspecified> EgressInstanceUint_t;

typedef bit<unspecified> TimestampUint_t;

Op4runtime_translation("p4.org/psa/vi/PortId_t", 32)

type PortIdUint_t PortId_t;

type MulticastGroupUint_t MulticastGroup_t;

type CloneSessionIdUint_t CloneSessionId_t;
Op4runtime_translation("p4.org/psa/v1/ClassOfService_t", 8)
type ClassOfServiceUint_t ClassOfService_t;

type PacketLengthUint_t PacketLength_t;

type EgressInstanceUint_t EgressInstance_t;

type TimestampUint_t Timestamp_t;

typedef error ParserError_t;

const PortId_t PSA_PORT_RECIRCULATE = (PortId_t) unspecified;
const PortId_t PSA_PORT_CPU = (PortId_t) unspecified;

2Tt is expected that psa.p4 include files for different targets will typically be nearly identical to each other. Besides
the possibility of differing bit widths for these PSA types, the only expected differences between psa.p4 files for
different targets would be annotations on externs, etc. that the P4 compiler for that target needs to do its job.

5The P4 Runtime API is defined as a Google Protocol Buffer .proto file and an accompanying English specification
document here: https://github.com/p4lang/p4runtime

2018-11-22 12:44 P46 Portable Switch Architecture 7

https://github.com/p4lang/p4runtime

4.2. PSA supported metadata types 4. PSA DATA TYPES

const CloneSessionId_t PSA_CLONE_SESSION_TO_CPU = (CloneSessiontId_t) unspecified;

S~
*

Note: All of the types with ‘InHeader‘ in their name are intended
only to carry values of the corresponding types in packet headers
between a PSA device and the P4Runtime Server software that manages
it.

The widths are intended to be at least as large as any PSA device
will ever have for that type. Thus these types may also be useful
to define packet headers that are sent directly between a PSA
device and other devices, without going through P4Runtime Server
software (e.g. this could be useful for sending packets to a
controller or data collection system using higher packet rates than
the P4Runtime Server can handle). If used for this purpose, there
is no requirement that the PSA data plane _automatically_ perform
the numerical translation of these types that would occur if the
header went through the P4Runtime Server. Any such desired
translation is up to the author of the P4 program to perform with
explicit code.

All widths must be a multiple of 8, so that any subset of these
fields may be used in a single P4 header definition, even on P4
implementations that restrict headers to contain fields with a
total length that is a multiple of 8 bits. */

¥ X X X X X X X X XK XK X X X X X X X X X *

/* See the comments near the definition of PortIdUint_t for why these
* typedef definitions exist. */

typedef bit<32> PortIdInHeaderUint_t;

typedef bit<32> MulticastGroupInHeaderUint_t;

typedef bit<16> CloneSessionIdInHeaderUint_t;

typedef bit<8> Class0fServicelInHeaderUint_t;

typedef bit<16> PacketLengthInHeaderUint_t;

typedef bit<16> EgressInstancelnHeaderUint_t;

typedef bit<64> TimestampInHeaderUint_t;

Op4runtime_translation("p4.org/psa/vl/PortIdInHeader_t", 32)

type PortIdInHeaderUint_t PortIdInHeader_t;

type MulticastGroupInHeaderUint_t MulticastGroupInHeader_t;

type CloneSessionIdInHeaderUint_t CloneSessionIdInHeader_t;
O@p4runtime_translation("p4.org/psa/v1/ClassOfServiceInHeader_t", 8)
type ClassOfServicelnHeaderUint_t ClassOfServiceInHeader_t;

type PacketLengthInHeaderUint_t PacketLengthInHeader_t;

type EgressInstancelnHeaderUint_t EgressInstanceInHeader_t;

type TimestampInHeaderUint_t TimestampInHeader_t;

4.2. PSA supported metadata types

enum PSA_PacketPath_t {
NORMAL, /// Packet received by ingress that is none of the cases below.
NORMAL_UNICAST, /// Normal packet received by egress which is unicast
NORMAL_MULTICAST, /// Normal packet received by egress which is multicast
CLONE_I2E, /// Packet created via a clone operation in ingress,

2018-11-22 12:44 P46 Portable Switch Architecture 8

4.2. PSA supported metadata types 4. PSA DATA TYPES

/// destined for egress
CLONE_E2E, /// Packet created via a clone operation in egress,

/// destined for egress
RESUBMIT, /// Packet arrival is the result of a resubmit operation
RECIRCULATE /// Packet arrival is the result of a recirculate operation

}

struct psa_ingress_parser_input_metadata_t {
PortId_t ingress_port;
PSA_PacketPath_t packet_path;

}

struct psa_egress_parser_input_metadata_t {
PortId_t egress_port;
PSA_PacketPath_t packet_path;

}

struct psa_ingress_input_metadata_t {
// All of these values are initialized by the architecture before
// the Ingress control block begins executing.

PortId_t ingress_port;
PSA_PacketPath_t packet_path;
Timestamp_t ingress_timestamp;
ParserError_t parser_error;

}

struct psa_ingress_output_metadata_t {
// The comment after each field specifies its initial value when the
// Ingress control block begins executing.

ClassOfService_t class_of_service; // 0

bool clone; // false

CloneSessionlId_t clone_session_id; // initial value is undefined

bool drop; // true

bool resubmit; // false

MulticastGroup_t multicast_group; // O

PortId_t egress_port; // initial value is undefined
}
struct psa_egress_input_metadata_t {

ClassOfService_t class_of_service;

PortId_t egress_port;

PSA_PacketPath_t packet_path;

EgressInstance_t instance; /// instance comes from the PacketReplicationEngine

Timestamp_t egress_timestamp;

ParserError_t parser_error;

}

/// This struct is an ’in’ parameter to the egress deparser. It
/// includes enough data for the egress deparser to distinguish
/// whether the packet should be recirculated or not.
struct psa_egress_deparser_input_metadata_t {

PortId_t egress_port;

2018-11-22 12:44 P46 Portable Switch Architecture 9

4.3. Match kinds 4. PSA DATA TYPES

}

struct psa_egress_output_metadata_t {
// The comment after each field specifies its initial value when the
// Egress control block begins executing.

bool clone; // false
CloneSessionld_t clone_session_id; // initial value is undefined
bool drop; // false

4.3. Match kinds
Additional supported match kind types

match_kind {
range, /// Used to represent min..max intervals
selector /// Used for dynamic action selection via the ActionSelector extern

4.4. Data plane vs. control plane data representations

A PSA data plane implementation that supports the P4 Runtime API® includes software called a
“P4 Runtime Server” that enables runtime programming of the PSA device from one or more “P4
Runtime Clients”. For brevity, here we will call a P4 Runtime Server an “agent”, and a P4 Runtime
Client a “controller”. A controller may control multiple devices with different PSA implementations.

As mentioned in section 4.1, different PSA implementations are expected to customize the size
of the data types that refer directly to those objects in the data plane, i.e. ports, multicast group
ids, etc.

Some PSA implementations are expected to use noticeably fewer resources for things like table
keys and action parameters if the data plane stores only the fewest number of bits required for values
of these types, for that implementation. For example, an implementation that defines PortId_t as
bit<6> instead of bit<16>, and can take advantage of this difference, could save 10 Mbits of storage
in a table with a million entries?.

The P4 Runtime API uses quantities with bit widths independent of the target device to hold
values of the types listed in section 4.1, to simplify the manipulation of these values in the controller
and agent software. For control plane operations on tables, any trimming or padding of values will
be performed in the agent (usually trimming in the direction from controller to device, and padding
in the direction from device to controller).

There are multiple channels of communication over which such values might be carried between
the controller and the data plane. These channels of communication include:

e Control plane operations on tables, where values of these types may be included as part of the
key, or as an action parameter.

e Control plane operations on parser value sets, where values of these types may be included as
part of the key.

e Packets sent to the CPU (“packet in” from the controller’s perspective), or received from the
CPU (“packet out” from the controller’s perspective).

5The P4 Runtime API is defined as a Google Protocol Buffer .proto file and an accompanying English specification
document here: https://github.com/p4lang/p4runtime

3While 10 Mbits sounds tiny to one accustomed to computers with hundreds of gigabytes of DRAM, the highest
speed PSA implementations are ASICs that must keep tables in on-chip memories, similar to caches in general purpose
CPUs. The Intel i9-7980XE released in 2017 has 198 Mbits of on-chip L3 cache shared by its CPU cores. Among
Intel processors in Intel’s 7th generation Core released in 2017 with at least 100 Mbits of L3 cache, they all cost close
to $9 per Mbit of L3 cache. https://en.wikipedia.org/wiki/List_of_Intel_microprocessors

2018-11-22 12:44 P46 Portable Switch Architecture 10

https://github.com/p4lang/p4runtime
https://en.wikipedia.org/wiki/List_of_Intel_microprocessors

4.4. Data plane vs. control plane data representations 4. PSA DATA TYPES

e Fields in a Digest extern notification message (section 7.14).
e Fields in the data contents of a Register array (section 7.9).

Note: There may be other channels not listed above.

For packets between the control plane and the PSA device, there is the issue that many PSA
implementations are expected to restrict P4 programs to have headers with fields with a total
length that is a multiple of 8 bits. To make it possible to define P4 header types that meet this
restriction, and contain values of fields with these PSA-specific types, and be source-compatible
across multiple PSA implementations, additional types are defined that contain InHeader in their
name. For example, PortIdInHeader_t is the same as PortId_t, except it must be a multiple of 8
bits long, and contain at least as many bits as PortId_t does.

Because these InHeader types are guaranteed to be a multiple of 8 bits long, you may include
any combination of them in a P4 header type definition, as long as the other fields in the header
satisfy the multiple of 8 bits restriction. The controller or P4 program generating packets with such
headers should fill in any most significant “padding” bits with 0. You may do this with a normal
assignment statement in your P4 program, where the value on the right hand side is cast to the
wider InHeader type. Similarly, casting a value of a wider type such as PortIdInHeader_t to the
corresponding narrower type PortId_t truncates the excess most significant bits as part of the cast.

Values of type PortId_t have an unusual property in PSA implementations. Because it can
make some hardware implementations more straightforward, the numerical values of fields with type
PortId_t in the P4 data plane might not be a simple range of values such as 0 through 31, as one
might choose when writing control plane software for a 32-port device. The agent is expected to
implement numerical translation between controller port id values and data plane port id values, for
each of the channels of communication between the controller and data plane described above.

The file psa.p4 contains an annotation p4runtime_translation on the type definition of types
PortId_t and PortIdInHeader_t. This enables the compiler to mark all uses of values of these types
that are accessible from the P4Runtime API, so the agent software knows that it must translate
them, and what kind of translation to perform. The benefit is that you do not need to put any
special markings on your uses of values of these types throughout your P4 program.

The cost of this approach is: if you want to do arithmetic on values of these types, you must
explicitly cast them to a bit<W> type. The psa.p4 include file defines PortIdUint_t as a typedef
with exactly the same width in bits as type PortId_t, so you can cast values of type PortId_t to
type PortIdUint_t, and then you can perform all P4 arithmetic operations on the value. The result
must be explicitly cast back to type PortId_t if you wish to assign it to a metadata field with that
type. Corresponding types with Uint in their name are defined for all PSA types.

Because of this translation, we recommend that values of type PortId_t be treated similarly
to values of an enum type. Comparing two values of this type for equality or “not equal to” is
reasonable, as well as assigning the values to other variables or parameters of the same type, but
nearly any other operations are prone to error. When matching values of type PortId_t as part of a
table key, always match a complete value exactly, or wildcard every bit of the value (i.e. a ternary
match kind with all bits wildcard, or an 1pm match kind with prefix length 0). If you attempt to
do any of the following things on a value with type PortId_t or PortIdInHeader_t, the numerical
translation performed may lead to functional errors in your program:

e Do a table key match on a subset of the bits, or a range match.

e Compare port values with relational operators like < or >.

e Compare port values to specific numeric literal values like 0 or Oxff. It is recommended in-
stead to compare their values by using them as table key fields, or parser value set key fields,
against values installed by the control plane (which have been translated to the correspond-
ing device-specific value as determined by the device’s agent software). It is also reasonable
to compare port values for equality against the symbolic constant values PSA_PORT_CPU or
PSA_PORT_RECIRCULATE, which have target-specific numeric values.

e Perform arithmetic on the value, and expect to get a value that corresponds to another port

2018-11-22 12:44 P46 Portable Switch Architecture 11

5. PROGRAMMABLE BLOCKS

of the device. Some numerical values may not correspond to any port of the device, and the
values corresponding to ports need not be consecutive.

The list above is not intended to be exhaustive.

All of the comments above apply to all types where numerical translation occurs between the
controller and the data plane. Below is a complete list of such types planned for numerical translation
by default with PSA, and have an annotation p4runtime_translation in the psa.p4 include file:

e PortId_t or PortIdIinHeader_t
e ClassOfService_t or ClassOfServicelInHeader_t

For the types listed below, no numerical translation occurs by default?. A PSA data plane must sup-
port all numerical values from 0 up to the maximum value that it supports. Except for Timestamp_t
values, the number of values supported by the data plane need not be a power of 2. Controllers
must have a way to discover each PSA device’s maximum supported value for each of these types.

e MulticastGroup_t - 0 is a special value that indicates no multicast replication is to be per-
formed for a packet, so this type is an exception to the rule above that 0 must be supported
in the data plane.

CloneSessionId_t

PacketLength_t

EgressInstance_t

Timestamp_t

TBD: Values of type Timestamp_t are being considered for numerical translation in the agent soft-
ware, between target-specific values, and a value with a common unit and 0 value reference across
all targts.
TBD: It is not clear yet whether it is reasonable to use a value of type PortId_t as an index to of
a Register extern, or of an indexed Counter or Meter extern. A likely result of attempting to do
this in a P4 program is that the indexes accessed will be the data plane specific values of PortId_t,
and when the control plane attempts to access values in these externs, the numerical translation
may not be performed on the index. It is reasonable to use a DirectCounter or DirectMeter with
a table key that includes a PortId_t field, because the agent software will perform port translation
for table keys.

If this is not a reasonable thing to do, the example program psa-example-counters.p4 should
be modified so that it does not do this, and scrub all other examples for any similar behavior.

5. Programmable blocks

The following declarations provide a template for the programmable blocks in the PSA. The P4
programmer is responsible for implementing controls that match these interfaces and instantiate
them in a package definition.

It uses the same user-defined metadata type IM and header type IH for all ingress parsers and
control blocks. The egress parser and control blocks can use the same types for those things, or
different types, as the P4 program author wishes.

parser IngressParser<H, M, RESUBM, RECIRCM>(
packet_in buffer,
out H parsed_hdr,
inout M user_meta,
in psa_ingress_parser_input_metadata_t istd,
in RESUBM resubmit_meta,

4The open source p4c P4 compiler is planned to support an option to enable numerical translation for additional
types, without modifying your P4 program, nor the psa.p4 include file. These additional types would be specified by
their name.

2018-11-22 12:44 P46 Portable Switch Architecture 12

5. PROGRAMMABLE BLOCKS

in RECIRCM recirculate_meta);

control Ingress<H, M>(
inout H hdr, inout M user_meta,
in psa_ingress_input_metadata_t istd,
inout psa_ingress_output_metadata_t ostd);

control IngressDeparser<H, M, CI2EM, RESUBM, NM>(
packet_out buffer,
out CI2EM clone_i2e_meta,
out RESUBM resubmit_meta,
out NM normal_meta,
inout H hdr,
in M meta,
in psa_ingress_output_metadata_t istd);

parser EgressParser<H, M, NM, CI2EM, CE2EM>(

packet_in buffer,

out H parsed_hdr,

inout M user_meta,

in psa_egress_parser_input_metadata_t istd,
in NM normal_meta,

in CI2EM clone_i2e_meta,

in CE2EM clone_e2e_meta);

control Egress<H, M>(
inout H hdr, inout M user_meta,
in psa_egress_input_metadata_t istd,
inout psa_egress_output_metadata_t ostd);

control EgressDeparser<H, M, CE2EM, RECIRCM>(
packet_out buffer,
out CE2EM clone_e2e_meta,
out RECIRCM recirculate_meta,
inout H hdr,
in M meta,
in psa_egress_output_metadata_t istd,
in psa_egress_deparser_input_metadata_t edstd);

package IngressPipeline<IH, IM, NM, CI2EM, RESUBM, RECIRCM>(
IngressParser<IH, IM, RESUBM, RECIRCM> ip,
Ingress<IH, IM> ig,
IngressDeparser<IH, IM, CI2EM, RESUBM, NM> id);

package EgressPipeline<EH, EM, NM, CI2EM, CE2EM, RECIRCM>(
EgressParser<EH, EM, NM, CI2EM, CE2EM> ep,
Egress<EH, EM> eg,
EgressDeparser<EH, EM, CE2EM, RECIRCM> ed);

package PSA_Switch<IH, IM, EH, EM, NM, CI2EM, CE2EM, RESUBM, RECIRCM> (
IngressPipeline<IH, IM, NM, CI2EM, RESUBM, RECIRCM> ingress,
PacketReplicationEngine pre,

2018-11-22 12:44 P46 Portable Switch Architecture 13

6. PACKET PATH DETAILS

NFP | NFCPU | RESUB | RECIRC

packet_in see text
user_meta see text
IngressParser istd fields (type psa_ingress_parser_input_metadata_t)
ingress_port PortId_t value of | PSA_PORT_ | copied from PSA_PORT_

packet’s input port | CPU resub’d packet | RECIRCULATE
packet_path NORMAL NORMAL RESUBMIT RECIRCULATE
Ingress istd fields (type psa_ingress_input_metadata_t)
ingress_port Same value as received by IngressParser above.
packet_path Same value as received by IngressParser above.

ingress_timestamp | Time that packet began processing in IngressParser.
For RESUB or RECIRC packets, the time the ‘copy’
began IngressParser, not the original.

parser_error From IngressParser. Always error.NoError if there
was N0 parser error.

Table 3. Initial values for packets processed by ingress.

EgressPipeline<EH, EM, NM, CI2EM, CE2EM, RECIRCM> egress,
BufferingQueueingEngine bqge) ;

6. Packet Path Details

Refer to section 3 for the packet paths provided by PSA, and their abbreviated names, used often
in this section.

6.1. Initial values of packets processed by ingress

Table 3 describes the initial values of the packet contents and metadata when a packet begins ingress
processing.

Note that the ingress_port value for a resubmitted packet could be PSA_PORT_RECIRCULATE if
a packet was recirculated, and then that recirculated packet was resubmitted.

6.1.1. Initial packet contents for packets from ports

For Ethernet ports, packet_in for FP and NFCPU path packets contains the Ethernet frame starting
with the Ethernet header. It does not include the Ethernet frame CRC.

TBD: Whether the payload is always the minimum of 46 bytes (64 byte minimum Ethernet frame
size, minus 14 bytes of header, minus 4 bytes of CRC), or whether an implementation is allowed to
leave some of those bytes out.}

The PSA does not put further restrictions on packet_in.length() as defined in the P4;4 spec.
Targets that do not support it, should provide mechanisms to raise an error.

The P4 Runtime has a “Packet Out” capability to send a packet from the controller to a PSA
device. Such packets are sent into the PSA device as NFCPU path packets. There is no metadata
associated with such packets, only the contents of the packet that are parsed normally by the P4
program’s IngressParser code. There may be some translation of header field values, as described in
Section 4.4.

2018-11-22 12:44 P46 Portable Switch Architecture 14

6.2. Behavior of packets after ingress processing is complete 6. PACKET PATH DETAILS

6.1.2. Initial packet contents for resubmitted packets

For RESUB packets, packet_in is the same as the pre-IngressParser contents of packet_in, for the
packet that caused this resubmitted packet to occur (i.e. with NO modifications from any ingress
processing).

6.1.3. Initial packet contents for recirculated packets

For RECIRC packets, packet_in is created by starting with the headers emitted by the egress
deparser of the egress packet that was recirculated, followed by the payload of that packet, i.e. the
part that was not parsed by the egress parser.

6.1.4. User-defined metadata for all ingress packets

The PSA architecture does not mandate initialization of user-defined metadata to known values as
given as input to the ingress parser. If a user’s P4 program explicitly initializes all user-defined
metadata early on (e.g. in the parser’s start state), then that will flow through the rest of the
parser into the Ingress control block as one might normally expect. This will be left as an option
to the user in their P4 programs, not required behavior for all P4 programs.

There are two direction in parameters to the ingress parser with user-defined types, named
resubmit_meta and recirculate_meta. They may be used to carry metadata for resubmitted and
recirculated packets.

Consider a packet that arrives at the ingress pipeline, and during ingress processing the P4
program assigns values to fields of the PSA standard metadata such that the packet is resubmitted
(see Section 6.2 for details on how to do so). In the ingress deparser, the P4 program assigns a
value to the out parameter named resubmit_meta. This value (which can be a collection of many
individual values in fields, sub-structs, headers, etc.) becomes associated with the resubmitted
packet by the PSA implementation, and when the resubmitted packet begins ingress parsing, that
becomes the value of the in parameter named resubmit_meta to the ingress parser.

For resubmitted packets, the value of the in parameter named recirculate_meta is undefined.

Conversely, for recirculated packets, the value of the in parameter named recirculate_meta
contains whatever value was assigned to the egress deparser out parameter named
recirculate_meta when the packet was recirculated. The value of the in parameter resubmit_meta
is undefined for recirculated packets.

For packets from a port, including the CPU port, both of the in parameters resubmit_meta and
recirculate_meta are undefined.

6.2. Behavior of packets after ingress processing is complete

The pseudocode below defines where copies of packets will be made after the Ingress control
block has completed executing, based upon the contents of several metadata fields in the struct
psa_ingress_output_metadata_t.

The function platform_port_valid() mentioned below takes a value of type PortId_t, return-
ing true only when the value represents an output port for the implementation. It is expected that
for some PSA implementations there will be bit patterns for a value of type PortId_t that do not cor-
respond to any port. This function returns true for both PSA_PORT_CPU and PSA_PORT_RECIRCULATE.
platform_port_valid is not defined in PSA for calling from the P4 data-plane program, since there
is no known use case for calling it at packet processing time. It is intended for describing the behavior
in pseudocode. The control plane is expected to configure tables with valid port numbers.

A comment saying “recommended to log error” is not a requirement, but a recommendation, that
a PSA implementation should maintain a counter that counts the number of times this error occurs.
It would also be useful if the implementation recorded details about the first few times this error
occurred, e.g. a FIFO queue of the first several invalid values of ostd.egress_port that cause an
error to occur, perhaps with other information about the packet that caused it, with tail dropping

2018-11-22 12:44 P46 Portable Switch Architecture 15

6.2. Behavior of packets after ingress processing is complete 6. PACKET PATH DETAILS

if it fills up. Control plane or driver software would be able to read these counters, and read and
drain the FIFO queues to assist P4 developers in debugging their code.

struct psa_ingress_output_metadata_t {
// The comment after each field specifies its initial value when the
// Ingress control block begins executing.

ClassOfService_t class_of_service; // 0

bool clone; // false

CloneSessionlId_t clone_session_id; // initial value is undefined
bool drop; // true

bool resubmit; // false

MulticastGroup_t multicast_group; // O

PortId_t egress_port; // initial value is undefined

}

First we give an outline of behavior, for quick reference of the relative priority of the possible actions.
This outline is only for reader convenience — it is not the specification for the behavior.

psa_ingress_output_metadata_t ostd;

if (ostd.clone) {
create ingress to egress clone(s), with options as configured by
the PRE clone session numbered ostd.clone_session_id;
} else { no clone; }

if (ostd.drop) { drop packet; }

else if (ostd.resubmit) { resubmit packet; }

else if (ostd.multicast_group != 0) { PRE multicast replicates packet; }
else { PRE sends one copy of packet to ostd.egress_port; }

The pseucode below defines the behavior a PSA implementation must follow.

psa_ingress_output_metadata_t ostd;

if (ostd.clone) {
if (ostd.clone_session_id value is supported) {
from the values configured for ostd.clone_session_id in PRE {
cos = class_of_service
set ((egress_port[0], instance[0]), ..., (egress_port[n], instance[n])) =
set of egress_port and instance pairs
trunc = truncate
plen = packet_length_bytes

X
if (cos value is not supported) {

cos = 0;

// Recommmended to log error about unsupported cos value.
¥

for each pair (egress_port, instance) in the set {
Create a clone of the packet and send it to the packet
buffer with the egress_port, instance, and
class_of_service cos, after which it will start egress
processing. It will contain at most the first plen
bytes of the packet as received at the ingress parser
if trunc is true, otherwise the entire packet.

2018-11-22 12:44 P46 Portable Switch Architecture 16

6.2. Behavior of packets after ingress processing is complete 6. PACKET PATH DETAILS

} else {
// Do not create a clone. Recommmended to log error about
// unsupported ostd.clone_session_id value.

// Continue below, regardless of whether a clone was created.
// Any clone created above is unaffected by the code below.
if (ostd.drop) {

drop the packet

return; // Do not continue below.

}

if (ostd.class_of_service value is not supported) {
ostd.class_of_service = 0; // use default class O instead
// Recommended to log error about unsupported
// ostd.class_of_service value.

}

if (ostd.resubmit) {
resubmit the packet, i.e. it will go back to starting with the
ingress parser;
return; // Do not continue below.

if (ostd.multicast_group != 0) {
Make O or more copies of the packet according to the control
plane configuration of multicast group ostd.multicast_group.
Every copy will have the same value of ostd.class_of_service
return; // Do not continue below.
}
if (platform_port_valid(ostd.egress_port)) {
enqueue one packet for output port ostd.egress_port with class
of service ostd.class_of_service
} else {
drop the packet
// Recommended to log error about unsupported ostd.egress_port value.

3

Whenever the pseudocode above indicates that a packet should be sent on a particular packet path,
a PSA implementation may under some circumstances instead drop the packet. For example, the
packet buffer may be too low on available space for storing new packets, or some other congestion
control mechanism such as RED (Random Early Detection) or AFD (Approximate Fair Dropping)
may select the packet for dropping. It is recommended that an implementation maintain counters
of packets dropped, preferably with separate counters for as many different reasons as the imple-
mentation has for dropping packets outside the control of the P4 program.

A PSA implementation may implement multiple classes of service for packets sent to the packet
buffer. If so, the Ingress control block may choose to assign a value to the ostd.class_of_service
field to change the packet’s class of service to a value other than the default of 0.

PSA only specifies how the Ingress control block can control the class of service of packets.
PSA does not mandate a scheduling policy among queues that may exist in the packet buffer.
Something at least as flexible as weighted fair queuing, with an optional strict high priority queue, is
recommended for PSA implementations with separate queues for each class of service. See appendix
F for more on packet ordering recommendations in PSA devices.

The P4 Runtime API specification defines how a controller may discover the number of distinct
class of service values that a PSA device supports.

2018-11-22 12:44 P46 Portable Switch Architecture 17

6.3. Actions for directing packets during ingress 6. PACKET PATH DETAILS

6.2.1. Multicast replication

The control plane may configure each multicast_group in the PRE to create the desired copies
of packets sent to that group. Each group begins empty. Sending a packet to an empty group
causes the packet to be dropped. The control plane may add one or more pairs of the form
(egress_port, instance) to a multicast group, and may also remove pairs from a group that
were added earlier.

Suppose a multicast group contains the following set of pairs:

(egress_port[0], instance[0]),
(egress_port[1], instance[1]),

(egress_port[N-1], instance[N-1])

When a packet is sent to that group, N copies of the packet are made. Copy number i that is sent
to egress processing will have its struct of type psa_egress_input_metadata_t filled in with the
field egress_port equal to egress_port[i], and the field instance filled in with instance[i].
Note: A multicast group is a set of pairs, and it is not required that an implementation create
copies in an order that the control plane can enforce. See appendix F for more on packet ordering
recommendations in PSA devices.

Within a single multicast group, the pairs (egress_port, instance) must be different from
each other, but it is allowed for any number of pairs within a multicast group to have the same value
of egress_port, or to have the same value of instance. The same pair (egress_port, instance)
can occur in any number of different multicast groups.

A PSA implementation need only support egress_port values that represent single ports of the
PSA device. That is, it need not implement support for egress_port values that represent an entire
Link Aggregation Group (LAG) interface, which is a set of physical ports over which load balancing
of traffic is performed.

A PSA device must support egress_port values in a multicast group that are equal to
PSA_PORT_CPU or PSA_PORT_RECIRCULATE. The copies of a multicast packet made to those ports
will behave the same in egress as a unicast packets sent to the corresponding port, i.e. if not
dropped, those copies will go the the CPU port, or be recirculated back to ingress.

6.3. Actions for directing packets during ingress

All of these actions modify one or more metadata fields in the struct with type
psa_ingress_output_metadata_t that is an inout parameter of the Ingress control block. None
of these actions have any other immediate effect. What happens to the packet is determined by the
value of all fields in that struct when ingress processing is complete, not at the time one of these
actions is called. See Section 6.2.

These actions are provided for convenience in making changes to these metadata fields. Their
effects are expected to be common kinds of changes one will want to make in a P4 program. If
they do not suit your use cases, you may modify the metadata fields directly in your P4 programs
however you prefer, e.g. within actions you define.

6.3.1. Unicast operation

Sends packet to a port. See Table 4, column NU, for how metadata fields are filled in when such a
packet begins egress processing.

/// Modify ingress output metadata to cause one packet to be sent to
/// egress processing, and then to the output port egress_port.
/// (Egress processing may choose to drop the packet instead.)

/// This action does not change whether a clone or resubmit operation

2018-11-22 12:44 P46 Portable Switch Architecture 18

6.4. Initial values of packets processed by egress 6. PACKET PATH DETAILS

/// will occur.

action send_to_port(inout psa_ingress_output_metadata_t meta,
in PortId_t egress_port)

{
meta.drop = false;
meta.multicast_group = (MulticastGroup_t) O;
meta.egress_port = egress_port;

}

6.3.2. Multicast operation

Sends packet to a multicast group or a port. See Table 4, column NM, for how metadata fields are
filled in when each multicast-replicated copy of such a packet begins egress processing.

The multicast_group parameter is the multicast group id. The control plane must configure
the multicast groups through a separate mechanism such as the P4 Runtime API.

/// Modify ingress output metadata to cause O or more copies of the
/// packet to be sent to egress processing.

/// This action does not change whether a clone or resubmit operation
/// will occur.

action multicast(inout psa_ingress_output_metadata_t meta,
in MulticastGroup_t multicast_group)

{
meta.drop = false;
meta.multicast_group = multicast_group;

6.3.3. Drop operation

Do not send a copy of the packet for normal egress processing.

/// Modify ingress output metadata to cause no packet to be sent for
/// normal egress processing.

/// This action does not change whether a clone will occur. It will
/// prevent a packet from being resubmitted.

action ingress_drop(inout psa_ingress_output_metadata_t meta)

{
meta.drop = true;

}

6.4. Initial values of packets processed by egress

Table 4 describes the initial values of the packet contents and metadata when a packet begins egress
processing.

6.4.1. Initial packet contents for normal packets

For NU and NM packets, packet_in comes from the ingress packet that caused this packet to be
sent to egress. It starts with the packet headers as emitted by the ingress deparser, followed by the
payload of that packet, i.e. the part that was not parsed by the ingress parser.

2018-11-22 12:44 P46 Portable Switch Architecture 19

6.4. Initial values of packets processed by egress 6. PACKET PATH DETAILS

NU ‘ NM ‘ CI2E ‘ CE2E
packet_in see text
user_meta see text
EgressParser istd fields (type psa_egress_parser_input_metadata_t)
egress_port ostd.egress_port | from PRE from PRE configuration
of ingress packet configuration of clone session
of multicast group
packet_path NORMAL NORMAL CLONE I2E | CLONE E2E
UNICAST MULTICAST
Egress istd fields (type psa_egress_input_metadata_t)
class_of_service | ostd.class_of_service from PRE configuration
of ingress packet of clone session
egress_port Same value as received by EgressParser above.
packet_path Same value as received by EgressParser above.
instance 0 from PRE from PRE configuration
configuration of clone session
of multicast group

egress_timestamp | Time that packet began processing in EgressParser. Filled in
independently for each copy of a multicast-replicated packet.
parser_error From EgressParser. Always error.NoError if there
was no parser error. See “Multicast copies” section.

Table 4. Initial values for packets processed by egress.

Packets to be recirculated, i.e. those sent to port PSA_PORT_RECIRCULATE via the normal uni-
cast or multicast packet paths, fit into this category. They are not treated differently by a PSA
implementation from normal unicast or multicast packets until they reach the egress deparser.

6.4.2. Initial packet contents for packets cloned from ingress to egress

For CI2E packets, packet_in is from the ingress packet that caused this clone to be created. It is the
same as the pre-IngressParser contents of packet_in of that ingress packet, with no modifications
from any ingress processing. Truncation of the payload is supported.

Packets cloned in ingress using a clone session configured with egress_port equal to
PSA_PORT_RECIRCULATE fit into this category.

6.4.3. Initial packet contents for packets cloned from egress to egress

For CE2E packets, packet_in is from the egress packet that caused this clone to be created. It
starts with the headers emitted by the egress deparser, followed by the payload of that packet, i.e.
the part that was not parsed by the egress parser. Truncation of the payload is supported.

Packets cloned in egress using a clone session configured with egress_port equal to
PSA_PORT_RECIRCULATE fit into this category.

6.4.4. User-defined metadata for all egress packets

This is very similar to how metadata is initialized for ingress packets. See Section 6.1.4.

The primary differences for egress packets are the different packet paths involved. There are
three parameters with direction in for the egress parser, named normal_meta, clone_i2e_meta,
and clone_e2e_meta. For every packet that begins egress processing, exactly one of those three has
defined contents, and the other two have undefined contents.

2018-11-22 12:44 P46 Portable Switch Architecture 20

6.5. Behavior of packets after egress processing is complete 6. PACKET PATH DETAILS

For NU and NM packets, the parameter normal_meta is the only one with defined contents. Its
value is the one that was assigned to the out parameter with the same name of the ingress deparser,
when the normal packet was completing its ingress processing.

For CLONE _I2E packets, the parameter clone_i2e_meta is the only one with defined contents.
Its value is the one that was assigned to the out parameter with the same name of the ingress
deparser, when the clone was created.

For CLONE E2E packets, the parameter clone_e2e_meta is the only one with defined contents.
Its value is the one that was assigned to the out parameter with the same name of the egress deparser,
when the clone was created.

6.4.5. Multicast and clone copies

The following fields may differ among copies of a multicast-replicated packet that are processed in
egress. Similarly for copies of a cloned packet when they are processed in egress. Both are referred
to as replicated packets in this section.

e egress_port - This field will typically differ among copies of a replicated packet, but it may
also be the same for arbitrary copies, as determined by the control plane configuration of the
PacketReplicationEngine. It is expected that the control plane will configure the PacketRepli-
cationEngine so that each copy of the same original packet is assigned a unique value of the
pair (egress_port, instance).

e instance - See egress_port

e egress_timestamp - This value is filled in independently for each copy of a replicated packet.
Depending upon the quantity of traffic destined to each output port, the timestamp could vary
significantly between copies of the same original packet.

e parser_error - In the common case, this will typically be the same for every copy of the same
original replicated packet. However, it is determined by the EgressParser P4 code for each
copy independently, so if that parsing behavior depends upon a field that can differ among
copies, e.g. egress_port, then parser_error can differ among copies.

All contents of a packet and its associated metadata, other than those mentioned above, will be the
same for every copy of the same original replicated packet.

6.5. Behavior of packets after egress processing is complete

The pseudocode below defines where copies of packets will be made after the Egress control
block has completed executing, based upon the contents of several metadata fields in the struct
psa_egress_output_metadata_t.

struct psa_egress_output_metadata_t {
// The comment after each field specifies its initial value when the
// Egress control block begins executing.

bool clone; // false
CloneSessionld_t clone_session_id; // initial value is undefined
bool drop; // false

}

psa_egress_input_metadata_t istd;
psa_egress_output_metadata_t ostd;

if (ostd.clone) {
if (ostd.clone_session_id value is supported) {
from the values configured for ostd.clone_session_id in PRE {
cos = class_of_service

2018-11-22 12:44 P46 Portable Switch Architecture 21

6.5. Behavior of packets after egress processing is complete 6. PACKET PATH DETAILS

set((egress_port[0], instance[0]), ..., (egress_port[n], instance[n])) =
set of egress_port and instance pairs

trunc = truncate

plen = packet_length_bytes

X

if (cos value is not supported) {
cos = 0;
// Recommmended to log error about unsupported cos
// value.

X

for each pair (egress_port, instance) in the set {
Create a clone of the packet and send it to the packet
buffer with the egress_port, instance, and
class_of_service cos, after which it will start egress
processing. It will contain at most the first plen
bytes of the packet as sent out from the egress
deparser if trunc is true, otherwise the entire
packet.

X

} else {
// Do not create a clone. Recommmended to log error about
// unsupported ostd.clone_session_id value.

// Continue below, regardless of whether a clone was created.
// Any clone created above is unaffected by the code below.
if (ostd.drop) {

drop the packet

return; // Do not continue below.

// The value istd.egress_port below is the same one that the
// packet began its egress processing with, as decided during
// ingress processing for this packet (or as determined by the PRE
// configuration of a clone session, for cloned packets,
// regardless of whether the clone operation was done in ingress
// or egress). The egress code is not allowed to change it.
if (istd.egress_port == PSA_PORT_RECIRCULATE) {
recirculate the packet, i.e. it will go back to starting with the
ingress parser;
return; // Do not continue below.
X

enqueue one packet for output port istd.egress_port

As for the handling of a packet after ingress processing, a PSA implementation may drop a packet
after egress processing, even if the pseudocode above says that a packet will be sent. For example,
you may attempt to clone a packet after egress when the packet buffer is too full, or you may attempt
to recirculate a packet when the ingress pipeline is busy handling other packets. It is recommended
that an implementation maintain counters of packets dropped, preferably with separate counters for
as many different reasons as the implementation has for dropping packets outside the control of the
P4 program.

2018-11-22 12:44 P46 Portable Switch Architecture 22

6.6. Actions for directing packets during egress 6. PACKET PATH DETAILS

6.6. Actions for directing packets during egress
6.6.1. Drop operation

Do not send the packet out of the device after egress processing is complete.

/// Modify egress output metadata to cause no packet to be sent out of
/// the device.

/// This action does not change whether a clone will occur.

action egress_drop(inout psa_egress_output_metadata_t meta)
{
meta.drop = true;

}

6.7. Contents of packets sent out to ports

There is no metadata associated with NTP and NTCPU packets.

They begin with the series of bytes emitted by the egress deparser. Following that is the payload,
which are those packet bytes that were not parsed in the egress parser.

For Ethernet ports, any padding required to get the packet up to the minimum frame size required
is done by the implementation, as well as calculation of and appending the Ethernet frame CRC.

It is expected that typical P4 programs will have explicit checks to avoid sending packets larger
than a port’s maximum frame size. A typical implementation will drop frames larger than this
maximum supported size. It is recommended that they maintain error counters for such dropped
frames.

The P4 Runtime has a “Packet In” capability to receive packets sent by a PSA device to the
port PSA_PORT_CPU. There is no metadata associated with such packets, only the contents of the
packet that are emitted normally by the P4 program’s EgressDeparser code. There may be some
translation of header field values, as described in Section 4.1.

6.8. Packet Cloning

Packet cloning is a mechanism to send a copy of a packet to a specified port, in addition to the
‘regular’ packet. Multiple clones can be made via a single clone operation, by appropriate control
plane configuration.

One use case for cloning is packet mirroring, i.e. send the packet to its normal destination
according to other features implemented by the P4 program, and in addition, send a copy of the
packet as received to another output port, e.g. to a monitoring device.

Packet cloning happens at the end of the ingress and/or egress pipeline. PSA specifies the
following semantics for the clone operation. When the clone operation is invoked at the end of the
ingress pipeline, each cloned packet is a copy of the packet as it entered the ingress parser. When
the clone operation is invoked at the end of the egress pipeline, each cloned packet is a copy of the
modified packet after egress processing, as output by the egress deparser. In both cases, the cloned
packets are submitted to the egress pipeline for further processing.

Logically, PRE implements the mechanics of copying a packet. The metadata fields that control
cloning are those whose names begin with clone in types psa_ingress_output_metadata_t and
psa_egress_output_metadata_t.

bool clone;
CloneSessionlId_t clone_session_id;

The clone flag specifies whether a packet should be cloned. If true, then a cloned packet, or
packets, should be generated at the end of the pipeline. The clone_session_id specifies one of

2018-11-22 12:44 P46 Portable Switch Architecture 23

6.8. Packet Cloning 6. PACKET PATH DETAILS

several possible clone sessions that the control plane may configure in the PRE. For each clone
session, the control plane may configure the following values that should be associated with packets
cloned using that session.

/// Each clone session may configure zero or more pairs of (egress_port, instance).
PortId_t egress_port; /// egress_port in a pair of (egress_port, instance)
EgressInstance_t instance; /// instance in a pair of (egress_port, instance)

/// Each clone session has configuration for exactly one of each of

/// the following values.

ClassOfService_t class_of_service;

bool truncate;

PacketLength_t packet_length_bytes; /// only used if truncate is true

The configuration of the set of (egress_port, instance) values for a clone session is similar to,
and has the same requirements and restrictions as, the configuration of a set of pairs for a multicast
group, as described in Section 6.2.1.

The egress_port values may be any ports that can be used for normal unicast packets, i.e. any
normal port, PSA_PORT_CPU, or PSA_PORT_RECIRCULATE. For the latter two values, the cloned packet
will be sent to the CPU, or recirculated at the end of egress processing, as a normal unicast packet
would at the end of egress processing.

Truncation of cloned packets is supported as an optimization to reduce the bandwidth required
to send the beginning of packets. This is sometimes useful in sending packet headers to the control
plane, or some kinds of data collection system for traffic monitoring. Here by “headers” we simply
mean “some number of bytes from the beginning of the packet”, not headers as defined and parsed
in your P4 program.

If truncate is false for a clone session, then no truncation is performed for packets cloned using
that session.

Otherwise, packets are truncated to contain at most the first packet_length_bytes bytes of
the packet, with any additional bytes removed. Truncating a packet has no effect on any meta-
data that is carried along with it, and the size of that metadata is not counted as part of the
packet_length_bytes quantity. Any truncation is based completely upon the length of the packet
as passed to the type packet_in parameter to the ingress parser (for ingress to egress clones), or as
sent out as the type packet_out parameter from the egress deparser (for egress to egress clones).

PSA implementations are allowed to support only a restricted set of possible values for
packet_length_bytes, e.g. an implementation might choose only to support values that are mul-
tiples of 32 bytes.

Since it is an expected common case to clone packets to the CPU, every PSA imple-
mentation begins with a clone session PSA_CLONE_SESSION_TO_CPU initialized with the set of
(egress_port, instance) values containing exactly one pair with egress_port = PSA_PORT_CPU
and instance = 0. This clone session is also initialized with the configuration values
class_of_service = 0, and truncate = false.

6.8.1. Clone Examples

The partial program below demonstrates how to clone a packet.

header clone_i2e_metadata_t {
bit<8> custom_tag;
EthernetAddress srcAddr;
}
control ingress(inout headers hdr,
inout metadata user_meta,
in psa_ingress_input_metadata_t istd,

2018-11-22 12:44 P46 Portable Switch Architecture 24

6.9. Packet Resubmission 6. PACKET PATH DETAILS

inout psa_ingress_output_metadata_t ostd)

{
action do_clone (CloneSessionIld_t session_id) {
ostd.clone = true;
ostd.clone_session_id = session_id;
user_meta.custom_clone_id = 1;
}
table t {
key = {
user_meta.fwd_metadata.outport : exact;
}
actions = { do_clone; }
}
apply {
t.applyO;
}
}

control IngressDeparserImpl(
packet_out packet,
out clone_i2e_metadata_t clone_i2e_meta,
out empty_metadata_t resubmit_meta,
out metadata normal_meta,
inout headers hdr,
in metadata meta,
in psa_ingress_output_metadata_t istd)

{
DeparserImpl() common_deparser;
apply {
// Assignments to the out parameter clone_i2e_meta must be
// guarded by this if condition:
if (psa_clone_i2e(istd)) {
clone_i2e_meta.custom_tag = (bit<8>) meta.custom_clone_id;
if (meta.custom_clone_id == 1) {
clone_i2e_meta.srcAddr = hdr.ethernet.srcAddr;
X
by
common_deparser.apply (packet, hdr);
}
}

6.9. Packet Resubmission

Packet resubmission is a mechanism to repeat ingress processing on a packet.

Packet resubmission happens at the end of the ingress pipeline. When a packet is resubmitted,
the packet finishes the ingress pipeline processing and re-enters the ingress parser without being
deparsed. In other words, the resubmitted packet has the same header and payload as the original
packet. The ingress_port of the resubmitted packet is the same as the original packet. The
packet_path of the resubmitted packet is changed to RESUBMIT.

The ingress parser distinguishes the resubmitted packet from the original packet with the
packet_path field in ingress_parser_intrinsic_metadata_t. The ingress parser can choose a
different algorithm to parse the resubmitted packet. Similarly, the ingress pipeline can choose to
process the resubmitted packet with different actions as opposed to the ones used to process the

2018-11-22 12:44 P46 Portable Switch Architecture 25

6.10. Packet Recirculation 7. PSA EXTERNS

original packet. Further, if a target permits the same packet to be resubmitted multiple times, the
user program can distinguish the packet resubmitted the first time, or second time, by the extra
metadata associated with the packet. Note the maximum number of packet resubmission for a single
packet is target-dependent. See section 3.

PSA specifies that the resubmit operation can only be used in the ingress pipeline. The egress
pipeline cannot resubmit packets. As described in Section 3, there is no mandated mechanism in
PSA to prevent a single received packet from creating packets that continue to recirculate, resubmit,
or clone from egress to egress indefinitely. However, targets may impose limits on the number of
resubmissions, recirculations, or clones.

One use case of packet resubmission is to increase the capacity and flexibility of the packet
processing pipeline. For example, because the same packet is processed by the ingress pipeline
multiple times, it effectively increase the amount of operations on the packet by N folds, where N is
the number of times the packet is resubmitted.

Another use case is to deploy multiple packet processing algorithms on the same packet. For
example, the original packet can be parsed and resubmitted in the first pass with additional metadata
to select one of the algorithms. Then, the resubmitted packet can be parsed, modified and deparsed
using the selected algorithm.

To facilitate communication from the ingress processing pass that caused a resubmit to occur,
to the next ingress processing pass after the resubmit has happened, the resubmission mechanism
supports attaching optional metadata with the resubmitted packet. The metadata is generated
during the pass through the ingress pipeline that chooses the resubmit operation, and used in the
next pass.

A PSA implementation provides a configuration bit resubmit to the PRE to enable the resub-
mission mechanism. If true, the original packet is resubmitted with the optional resubmit metadata.
If false, the resubmission mechanism is disabled and no assignments to resubmit_meta should be
performed.

6.10. Packet Recirculation

Packet recirculation is a mechanism to repeat ingress processing on a packet, after it has completed
egress processing. Unlike a resubmit, where the resubmitted packet contents are identical to the
packet that arrived at the ingress parser, a recirculated packet may have different headers than the
packet had before recirculation. This could be useful in implementing features such as multiple levels
of tunnel encapsulation or decapsulation.

Whether a packet is recirculated must be chosen during ingress processing, by sending the packet
to port PSA_PORT_RECIRCULATE. Packet recirculation happens at the end of the egress pipeline.
When a packet is sent to the recirculate port, the packet finishes egress processing, including the
egress deparser, and then re-enters the ingress parser. The ingress_port of the recirculated packet
is set to PSA_PORT_RECIRCULATE. The packet_path of the recirculated packet is set to RECIRCULATE.

Similar to packet resubmission, packet recirculation also supports attaching optional metadata
with the recirculated packet. The metadata is generated during egress processing, and filled in by
assigning a value to the out parameter recirculate_meta of the egress deparser. The metadata is
available to the ingress parser after the packet is recirculated.

7. PSA Externs

7.1. Restrictions on where externs may be used

All instantiations in a P4,4 program occur at compile time, and can be arranged in a tree structure
we will call the instantiation tree. The root of the tree T represents the top level of the program. Its
children are the node for the package PSA_Switch described in Section 5, and any externs instantiated
at the top level of the program. The children of the PSA_Switch node are the packages and externs

2018-11-22 12:44 P46 Portable Switch Architecture 26

7.1. Restrictions on where externs may be used 7. PSA EXTERNS

Extern type Where it may be instantiated and called from
ActionProfile Ingress, Egress

ActionSelector Ingress, Egress

Checksum IngressParser, EgressParser, IngressDeparser, EgressDeparser
Counter Ingress, Egress

Digest IngressDeparser

DirectCounter Ingress, Egress

DirectMeter Ingress, Egress

Hash Ingress, Egress

InternetChecksum | IngressParser, EgressParser, IngressDeparser, EgressDeparser
Meter Ingress, Egress

Random Ingress, Egress

Register Ingress, Egress

Table 5. Summary of controls that can instantiate and invoke externs.

passed as parameters to the PSA_Switch instantiation. See Figure 3 for a drawing of the smallest
instantiation tree possible for a P4 program written for PSA.

T
|
PSA_Switch

|
| | [|

IngressPipeline PacketReplicationEngine EgressPipeline BufferingQueueingEngine

IngressParser Ingress IngressDeparser EgressParser Egress EgressDeparser

Figure 3. Minimal PSA instantiation tree

If any of those parsers or controls instantiate other parsers, controls, and/or externs, the instantiation
tree contains child nodes for them, continuing until the instantiation tree is complete.

For every instance whose node is a descendant of the Ingress node in this tree, call it an Ingress
instance. Similarly for the other ingress and egress parsers and controls. All other instances are top
level instances.

A PSA implementation is allowed to reject programs that instantiate externs, or attempt to call
their methods, from anywhere other than the places mentioned in Table 5.

For example, Counter being restricted to “Ingress, Egress” means that every Counter instance
must be instantiated within either the Ingress control block or the Egress control block, or be a
descendant of one of those nodes in the instantiation tree. If a Counter instance is instantiated in
Ingress, for example, then it cannot be referenced, and thus its methods cannot be called, from any
control block except Ingress or one of its descendants in the tree.

PSA implementations need not support instantiating these externs at the top level. PSA imple-
mentations are allowed to accept programs that use these externs in other places, but they need not.
Thus P4 programmers wishing to maximize the portability of their programs should restrict their
use of these externs to the places indicated in the table.

emit method calls for the type packet_out are restricted to be within deparser control blocks in

2018-11-22 12:44 P46 Portable Switch Architecture 27

7.2. PSA Table Properties 7. PSA EXTERNS

Property name Type See also
psa_direct_counter one DirectCounter instance name Section 7.7.3
psa_direct_meter one DirectMeter instance name Section 7.8
psa_implementation instance name of one ActionProfile | Sections 7.11, 7.12

or ActionSelector
psa_empty_group_action | action Section 7.12
psa_idle_timeout PSA_IdleTimeout_t Section 7.2.1

Table 6. Summary of PSA table properties.

PSA, because those are the only places where an instance of type packet_out is visible. Similarly
all methods for type packet_in, e.g. extract and advance, are restricted to be within parsers in
PSA programs. P4;¢ restricts all verify method calls to be within parsers for all P46 programs,
regardless of whether they are for the PSA.

Rationale:

e It is expected that the highest performance PSA implementations will not be able to update
the same extern instance from both Ingress and Egress, nor from more than one of the parsers
or controls defined in the PSA architecture.

e In a multi-pipeline device, there are effectively multiple instantiations of the ingress pipeline
and of the egress pipeline. The primary motivation to create a multi-pipeline device is the
practical difficulty in allowing the same stateful object (e.g. table, counter, etc.) to be accessed
at a packet rate higher than that of a single pipeline. Thus each stateful object should be
accessed from only a single pipeline on such a device. See appendix E.

7.2. PSA Table Properties

Table 6 lists all P4 table properties defined by PSA that are not included in the base P44 language
specification.

A PSA implementation need not support both of a psa_implementation and
psa_direct_counter property on the same table.

Similarly, a PSA implementation need not support both of a psa_implementation and
psa_direct_meter property on the same table.

A PSA implementation must implement tables that have both a psa_direct_counter and
psa_direct_meter property.

A PSA implementation need not support both psa_implementation and psa_idle_timeout
properties on the same table.

7.2.1. Table entry timeout notification

PSA uses the psa_idle_timeout to enable a table implementation send notifications from the PSA
device when a configurable time has passed since an entry was last matched. The property may take
one of two values — NO_TIMEOUT, and NOTIFY_CONTROL. NO_TIMEQUT disables idle timeout support for
the table and it is the default value when the property is not present. NOTIFY_CONTROL enables the
notification. A PSA implementation will then generate an API for the control plane to set time-to-
live (TTL) values for table entries and if at any time during its lifetime, the table entry is not “hit”
(i.e. not selected by any packet lookup) for a lapse of time greater or equal to its TTL, the device
should generate a notification to the control plane. The rate and mode of how the notifications are
generated and delivered to the control plane are subject to configuration parameters specified by
the control plane API.
Example:

2018-11-22 12:44 P46 Portable Switch Architecture 28

7.3. Packet Replication Engine 7. PSA EXTERNS

enum PSA_IdleTimeout_t {
NO_TIMEQUT,
NOTIFY_CONTROL

}

table t {
action al (O { ... }
action a2 () { ... }

key = { hdr.f1: exact; }

actions = { al; a2; }

default_action = a2;

psa_idle_timeout = PSA_IdleTimeout_t.NOTIFY_CONTROL;
}

Restrictions on the TTL values and notifications:

e It is likely that any hardware implementation will have a limited number of bits to represent
the values, and, since the values are programmed at runtime, it is the responsibility of the
runtime (P4Runtime or other controller software) to guarantee that the TTL values can be
represented in the device. This can be done by scaling the values to the number of bits available
on the platform, ensuring that the range of values between different entries are representable.
A PSA implementation should only enable the programming of such tables, and return an
error if the device does not support the idle timeout at all.

e If no value is programmed for a table entry, even though the table has enabled the idle timeout
property, the entry will not generate a notification.

e PSA does not require a timeout value for a default action entry. The reason for not making
this mandatory in the specification is that tthe default action may not have an explicit table
entry to represent it, and also there are no known compelling use cases for a controller knowing
when no misses have occurred for a particular table for a long time. The default action entry
will not be aged out.

e Currently, tables implemented using ActionSelectors and ActionProfiles do not support the
psa_idle_timeout property. Future versions of the specification may remove this restriction.

7.3. Packet Replication Engine

The PacketReplicationEngine extern (abbreviated PRE) represents a part of the PSA pipeline
that is not programmable via writing P4 code.

Even though the PRE can not be programmed using P4, it can be configured using con-
trol plane APIs, e.g. configuring multicast groups and clone sessions. For every packet, your
P4 program will typically assign values to intrinsic metadata in structs such as those of type
psa_ingress_output_metadata_t and psa_egress_output_metadata_t, which direct the oper-
ation of the PRE on that packet. The file psa.p4 defines some actions to help set these metadata
fields for some common use cases, described in sections 6.3 and 6.6.

The PRE extern must be instantiated exactly once, in the PSA_Switch package instantiation. See
near the end of Section 5 for the package definitions from psa.p4. See below for an example of in-
stantiating these packages, including the instantiation of one instance of PacketReplicationEngine
and one of BufferingQueueingEngine in the PSA_Switch package instantiation.

IngressPipeline(IngressParserImpl(),
ingress(Q),
IngressDeparserImpl()) ip;

2018-11-22 12:44 P46 Portable Switch Architecture 29

7.4. Buffering Queuing Engine 7. PSA EXTERNS

EgressPipeline (EgressParserImpl(),
egress(),
EgressDeparserImpl()) ep;

PSA_Switch(ip, PacketReplicationEngine(), ep, BufferingQueueingEngine()) main;

7.4. Buffering Queuing Engine

The BufferingQueueingEngine extern (abbreviated BQE) represents another part of the PSA
pipeline, after egress, that is not programmable via writing P4 code.

Even though the BQE can not be programmed using P4, it can be configured both directly using
control plane APIs and by setting intrinsic metadata.

The BQE extern must be instantiated exactly once, as the PRE must. See Section 7.3 for
additional discussion and example code.

7.5. Hashes
Supported hash algorithms:

enum PSA_HashAlgorithm_t {
IDENTITY,
CRC32,
CRC32_CUSTOM,
CRC16,
CRC16_CUSTOM,
ONES_COMPLEMENT16, /// One’s complement 16-bit sum used for IPv4 headers,
/// TCP, and UDP.
TARGET_DEFAULT /// target implementation defined

7.5.1. Hash function

Example usage:

parser P() {
Hash<bit<16>>(PSA_HashAlgorithm_t.CRC16) h;
bit<16> hash_value = h.get_hash(buffer);

}

Parameters:

e algo — The algorithm to use for computation (see 7.5).
e 0 — The type of the return value of the hash.

extern Hash<0> {
/// Constructor
Hash(PSA_HashAlgorithm_t algo);

/// Compute the hash for data.

/// Q@param data The data over which to calculate the hash.
/// Qreturn The hash value.

0 get_hash<D>(in D data);

/// Compute the hash for data, with modulo by max, then add base.
/// @param base Minimum return value.
/// @param data The data over which to calculate the hash.

2018-11-22 12:44 P46 Portable Switch Architecture 30

7.6. Checksums 7. PSA EXTERNS

/// @param max The hash value is divided by max to get modulo.

/// An implementation may limit the largest value supported,
/// e.g. to a value like 32, or 256, and may also only

/// support powers of 2 for this value. P4 developers should
/// limit their choice to such values if they wish to

/// maximize portability.

/// @return (base + (h % max)) where h is the hash value.
0 get_hash<T, D>(in T base, in D data, in T max);

7.6. Checksums

PSA provides checksum functions compute an integer on the stream of bytes in packet headers.
Checksums are often used as an integrity check to detect corrupted or otherwise malformed packets.

7.6.1. Basic checksum

The basic checksum extern provided in PSA supports arbitrary hash algorithms.
Parameters:

e W — The width of the checksum

extern Checksum<W> {
/// Constructor
Checksum(PSA_HashAlgorithm_t hash);

/// Reset internal state and prepare unit for computation.

/// Every instance of a Checksum object is automatically initialized as

/// if clear() had been called on it. This initialization happens every

/// time the object is instantiated, that is, whenever the parser or control
/// containing the Checksum object are applied.

/// All state maintained by the Checksum object is independent per packet.
void clear();

/// Add data to checksum
void update<T>(in T data);

/// Get checksum for data added (and not removed) since last clear
W get();
}

7.6.2. Incremental checksum

PSA also provides an incremental checksum that comes equipped with an additional subtract
method that can be used to remove data previously added. The checksum is computed using the
ONES_COMPLEMENT16 hash algorithm used with protocols such as IPv4, TCP, and UDP — see IETF
RFC 1624 and section B for details.

// Checksum based on ‘ONES_COMPLEMENT16°¢ algorithm used in IPv4, TCP, and UDP.
// Supports incremental updating via ‘subtract® method.
// See IETF RFC 1624.
extern InternetChecksum {
/// Constructor
InternetChecksum() ;

2018-11-22 12:44 P46 Portable Switch Architecture 31

https://tools.ietf.org/html/rfc1624
https://tools.ietf.org/html/rfc1624

7.6. Checksums 7. PSA EXTERNS

/// Reset internal state and prepare unit for computation. Every
/// instance of an InternetChecksum object is automatically

/// initialized as if clear() had been called on it, once for each
/// time the parser or control it is instantiated within is

/// executed. All state maintained by it is independent per packet.
void clear();

/// Add data to checksum. data must be a multiple of 16 bits long.
void add<T>(in T data);

/// Subtract data from existing checksum. data must be a multiple of
/// 16 bits long.
void subtract<T>(in T data);

/// Get checksum for data added (and not removed) since last clear
bit<16> get();

/// Get current state of checksum computation. The return value is
/// only intended to be used for a future call to the set_state

/// method.

bit<16> get_state();

/// Restore the state of the InternetChecksum instance to one
/// returned from an earlier call to the get_state method. This
/// state could have been returned from the same instance of the
/// InternetChecksum extern, or a different one.

void set_state(in bit<16> checksum_state);

7.6.3. InternetChecksum examples

The partial program below demonstrates one way to use the InternetChecksum extern to verify
whether the checksum field in a parsed IPv4 header is correct, and set a parser error if it is wrong.
It also demonstrates checking for parser errors in the Ingress control block, dropping the packet if
any errors occurred during parsing. PSA programs may choose to handle packets with parser errors
in other ways than shown in this example — it is up to the P4 program author to choose and write
the desired behavior.

Neither P414 nor the PSA provide any special mechanisms to record the location within a packet
that a parser error occurred. A P4 program author can choose to record such location information
explicitly. For example, one may define metadata fields specifically for that purpose — e.g. to hold
an encoded value representing the last parser state reached, or the number of bytes extracted so far
— and then assign values to those fields within the parser state code.

// Define additional error values, one of them for packets with
// incorrect IPv4 header checksums.

error {
UnhandledIPv40ptions,
BadIPv4HeaderChecksum
}

typedef bit<32> PacketCounter_t;
typedef bit<8> ErrorIndex_t;

2018-11-22 12:44 P46 Portable Switch Architecture 32

7.6. Checksums 7. PSA EXTERNS

const bit<9> NUM_ERRORS = 256;

parser IngressParserImpl(packet_in buffer,
out headers hdr,
inout metadata user_meta,
in psa_ingress_parser_input_metadata_t istd,
in empty_metadata_t resubmit_meta,
in empty_metadata_t recirculate_meta)

{
InternetChecksum() ck;
state start {
buffer.extract (hdr.ethernet);
transition select(hdr.ethernet.etherType) {
0x0800: parse_ipv4;
default: accept;
}
}
state parse_ipv4d {
buffer.extract (hdr.ipv4) ;
// TBD: It would be good to enhance this example to
// demonstrate checking of IPv4 header checksums for IPv4
// headers with options, but this example does not handle such
// packets.
verify(hdr.ipv4.ihl == 5, error.UnhandledIPv40ptions);
ck.clear();
ck.add({
/* 16-bit word O */ hdr.ipvé4.version, hdr.ipv4.ihl, hdr.ipv4.diffserv,
/* 16-bit word 1 */ hdr.ipv4.totallen,
/* 16-bit word 2 */ hdr.ipv4.identification,
/* 16-bit word 3 */ hdr.ipv4.flags, hdr.ipv4.fragOffset,
/* 16-bit word 4 */ hdr.ipv4.ttl, hdr.ipv4.protocol,
/* 16-bit word 5 skip hdr.ipv4.hdrChecksum, */
/* 16-bit words 6-7 */ hdr.ipv4.srcAddr,
/* 16-bit words 8-9 */ hdr.ipv4.dstAddr
s
// The verify statement below will cause the parser to enter
// the reject state, and thus terminate parsing immediately,
// if the IPv4 header checksum is wrong. It will also record
// the error error.BadIPv4HeaderChecksum, which will be
// available in a metadata field in the ingress control block.
verify(ck.get() == hdr.ipv4.hdrChecksum,
error.BadIPv4HeaderChecksum) ;
transition select(hdr.ipv4.protocol) {
6: parse_tcp;
default: accept;
}
}
state parse_tcp {
buffer.extract (hdr.tcp);
transition accept;
}
}

2018-11-22 12:44 P46 Portable Switch Architecture 33

7.6. Checksums 7. PSA EXTERNS

control ingress(inout headers hdr,
inout metadata user_meta,
in psa_ingress_input_metadata_t istd,
inout psa_ingress_output_metadata_t ostd)

{
// Table parser_error_count_and_convert below shows one way to
// count the number of times each parser error was encountered.
// Although it is not used in this example program, it also shows
// how to convert the error value into a unique bit vector value
// ’error_idx’, which can be useful if you wish to put a bit
// vector encoding of an error into a packet header, e.g. for a
// packet sent to the control CPU.
DirectCounter<PacketCounter_t>(PSA_CounterType_t.PACKETS) parser_error_counts;
ErrorIndex_t error_idx;
action set_error_idx (ErrorIndex_t idx) {
error_idx = idx;
parser_error_counts.count() ;
}
table parser_error_count_and_convert {
key = {
istd.parser_error : exact;
}
actions = {
set_error_idx;
X
default_action = set_error_idx(0);
const entries = {
error.NoError : set_error_idx(1);
error.PacketTooShort : set_error_idx(2);
error.NoMatch : set_error_idx(3);
error.StackOutOfBounds : set_error_idx(4);
error.HeaderTooShort : set_error_idx(5);
error.ParserTimeout : set_error_idx(6);
error .BadIPv4HeaderChecksum : set_error_idx(7);
error.UnhandledIPv40ptions : set_error_idx(8);
by
psa_direct_counter = parser_error_counts;
}
apply {
if (istd.parser_error != error.NoError) {
// Example code showing how to count number of times each
// kind of parser error was seen.
parser_error_count_and_convert.apply();
ingress_drop(ostd) ;
exit;
¥
// Do normal packet processing here.
}
}

2018-11-22 12:44 P46 Portable Switch Architecture 34

7.6. Checksums 7. PSA EXTERNS

The partial program below demonstrates one way to use the InternetChecksum extern to calculate
and then fill in a correct IPv4 header checksum in the deparser block. In this example, the checksum
is calculated fresh, so the outgoing checksum will be correct regardless of what changes might have
been made to the IPv4 header fields in the Ingress (or Egress) control block that precedes it.

control EgressDeparserImpl(packet_out packet,
out empty_metadata_t clone_e2e_meta,
out empty_metadata_t recirculate_meta,
inout headers hdr,
in metadata meta,
in psa_egress_output_metadata_t istd,
in psa_egress_deparser_input_metadata_t edstd)

{
InternetChecksum() ck;
apply {
ck.clear();
ck.add({
/* 16-bit word O */ hdr.ipv4.version, hdr.ipv4.ihl, hdr.ipv4.diffserv,
/* 16-bit word 1 */ hdr.ipv4.totallen,
/* 16-bit word 2 */ hdr.ipv4.identification,
/* 16-bit word 3 */ hdr.ipv4.flags, hdr.ipv4.fragOffset,
/* 16-bit word 4 */ hdr.ipv4.ttl, hdr.ipvé4.protocol,
/* 16-bit word 5 skip hdr.ipv4.hdrChecksum, */
/* 16-bit words 6-7 */ hdr.ipv4.srcAddr,
/* 16-bit words 8-9 */ hdr.ipv4.dstAddr
s
hdr.ipv4.hdrChecksum = ck.get();
packet.emit (hdr.ethernet) ;
packet.emit (hdr.ipv4) ;
packet.emit (hdr.tcp);
}
}

As a final example, we can use the InternetChecksum to compute an incremental checksum for the
TCP header. Recall the TCP checksum is computed over the entire packet, including the payload.
Because the packet payload need not be available in a PSA implementation, we assume that the
TCP checksum on the original packet is correct, and update it incrementally by invoking subtract
and then add on any fields that are modified by the program. For example, the Ingress control
in the program below updates the IPv4 source address, recording the original source address in a
metadata field:

control ingress(inout headers hdr,
inout metadata user_meta,
in psa_ingress_input_metadata_t istd,
inout psa_ingress_output_metadata_t ostd) {
action drop() {
ingress_drop(ostd) ;
}
action forward(PortId_t port, bit<32> srcAddr) {
user_meta.fwd_metadata.old_srcAddr = hdr.ipv4.srcAddr;
hdr.ipv4.srcAddr = srcAddr;
send_to_port(ostd, port);
}
table route {

2018-11-22 12:44 P46 Portable Switch Architecture 35

7.6. Checksums 7. PSA EXTERNS

key = { hdr.ipv4.dstAddr : lpm; }
actions = {

forward;
drop;
}
}
apply {
if (hdr.ipv4.isValid()) {
route.apply(;
}
}

}

The deparser first updates the IPv4 checksum as above, and then incrementally computes the TCP
checksum.

control EgressDeparserImpl(packet_out packet,
out empty_metadata_t clone_e2e_meta,
out empty_metadata_t recirculate_meta,
inout headers hdr,
in metadata user_meta,
in psa_egress_output_metadata_t istd,
in psa_egress_deparser_input_metadata_t edstd)

InternetChecksum() ck;
apply {
// Update IPv4 checksum
// This clear() call can be removed without affecting
// behavior, as an InternetCheckum instance is automatically
// cleared for each packet.
ck.clear();
ck.add({
/* 16-bit word
/* 16-bit word

0 */ hdr.ipv4.version, hdr.ipv4.ihl, hdr.ipv4.diffserv,
1 */ hdr.ipvé4.totallen,
/* 16-bit word 2 */ hdr.ipv4.identification,
/* 16-bit word 3 */ hdr.ipv4.flags, hdr.ipv4.fragOffset,
/* 16-bit word 4 */ hdr.ipv4.ttl, hdr.ipv4.protocol,
/* 16-bit word 5 skip hdr.ipv4.hdrChecksum, */
/* 16-bit words 6-7 */ hdr.ipv4.srcAddr,
/* 16-bit words 8-9 */ hdr.ipv4.dstAddr

B
hdr.ipv4.hdrChecksum = ck.get();
// Update TCP checksum
// This clear() call is necessary for correct behavior, since
// the same instance ’ck’ is reused from above for the same
// packet. If a second InternetChecksum instance other than
// ’ck’ were used below instead, this clear() call would be
// unnecessary.
ck.clear();
// Subtract the original TCP checksum
ck.subtract (hdr.tcp.checksum) ;
// Subtract the effect of the original IPv4 source address,
// which is part of the TCP ’pseudo-header’ for the purposes
// of TCP checksum calculation (see RFC 793), then add the

2018-11-22 12:44 P46 Portable Switch Architecture 36

7.7. Counters 7. PSA EXTERNS

// effect of the new IPv4 source address.
ck.subtract (user_meta.fwd_metadata.old_srcAddr);
ck.add (hdr.ipv4.srcAddr);

hdr.tcp.checksum = ck.get();

packet.emit (hdr.ethernet) ;

packet.emit (hdr.ipv4) ;

packet.emit (hdr.tcp);

7.7. Counters

Counters are a mechanism for keeping statistics. The control plane can read counter values. A P4
program cannot read counter values, only update them. If you wish to implement a feature involving
sequence numbers in packets, for example, use Registers instead (Section 7.9).

Direct counters are counters associated with a particular P4 table, and are implemented by the
extern DirectCounter. There are also indexed counters, which are implemented by the extern
Counter. The primary differences between direct counters and indexed counters are:

e Number of independently updatable counter values:

— A single instantiation of a direct counter always contains as many independent counter
values as the number of entries in the table with which it is associated.

— You must specify the number of independent counter values for an indexed counter when
instantiating it. This number of counters need not be the same as the size of any table.

e Where counter updates are allowed in the P4 program:

— For a direct counter, you may only invoke its count method from inside the actions of the
table with which it is associated, and this always updates the counter value associated
with the matching table entry.

— For an indexed counter, you may invoke its count method anywhere in the P4 program
where extern object method invocations are permitted (e.g. inside actions, or directly
inside a control’s apply block), and every such invocation must specify the index of the
counter value to be updated.

Counters are only intended to support packet counters and byte counters, or a combination of both
called PACKETS_AND_BYTES. The byte counts are always increased by some measure of the packet
length, where the packet length used might vary from one PSA implementation to another. For
example, one implementation might use the Ethernet frame length, including the Ethernet header
and FCS bytes, as the packet arrived on a physical port. Another might not include the FCS bytes
in its definition of the packet length. Another might only include the Ethernet payload length. Each
PSA implementation should document how it determines the packet length used for byte counter
updates.

If you wish to keep counts of other quantities, or to have more precise control over the packet
length used in a byte counter, you may use Registers to achieve that (Section 7.9).

7.7.1. Counter types

enum PSA_CounterType_t {
PACKETS,
BYTES,
PACKETS_AND_BYTES

2018-11-22 12:44 P46 Portable Switch Architecture 37

7.7. Counters

7. PSA EXTERNS

7.7.2. Counter

/// Indirect counter with n_counters independent counter values, where

/// every counter value has a data plane size specified by type W.

extern Counter<W, S> {

}

See section C for pseudocode of an example implementation of the Counter extern.

7.7.3. Direct Counter

Counter (bit<32> n_counters, PSA_CounterType_t type);
void count(in S index);

/*

/// The control plane API uses 64-bit wide counter values.

It is

/// not intended to represent the size of counters as they are

/// stored in the data plane.

It is expected that control plane

/// software will periodically read the data plane counter values,
/// and accumulate them into larger counters that are large enough
/// to avoid reaching their maximum values for a suitably long

/// operational time.
/// line rate for a 100 gigabit port would take over 46 years to

/// wrap.

@ControlPlaneAPI
{
bit<64> read

(in

bit<64> sync_read (in

void set
void reset
void start
void stop
}
*/

(in
(in
(in
(in

A 64-bit byte counter increased at maximum

index) ;
index) ;
index, in bit<64> seed);
index) ;
index) ;
index) ;

0 nn n 2 2 L

PSA implementations must not update any counter values if an indexed counter is updated with
an index that is too large. It is recommended that they count such erroneous attempted updates,
and record other information that can help an P4 programmer debug such errors.

extern DirectCounter<W> {
DirectCounter (PSA_CounterType_t type);

void count();

/%

@ControlPlaneAPI

{
W read<w> (in
W sync_read<W> (in
void set (in
void reset (in
void start (in
void stop (in

TableEntry key);
TableEntry key);
TableEntry key, in W seed);
TableEntry key);
TableEntry key);
TableEntry key);

2018-11-22 12:44

P46 Portable Switch Architecture

38

7.7. Counters 7. PSA EXTERNS

*/
}

A DirectCounter instance must appear as the value of the psa_direct_counter table attribute
for at most one table. We call this table the DirectCounter instance’s “owner”. It is an error to
call the count method for a DirectCounter instance anywhere except inside an action of its owner
table.

The counter value updated by an invocation of count is always the one associated with the table
entry that matched.

An action of an owner table need not have count method calls for all of the DirectCounter
instances that the table owns. You must use an explicit count () method call on a DirectCounter
to update it, otherwise its state will not change.

An example implementation for the DirectCounter extern is essentially the same as the one for
Counter. Since there is no index parameter to the count method, there is no need to check for
whether it is in range.

The rules here mean that an action that calls count on a DirectCounter instance may only
be an action of that instance’s one owner table. If you want to have a single action A that can be
invoked by multiple tables, you can still do so by having a unique action for each such table with a
DirectCounter, where each such action in turn calls action A, in addition to any count invocations
they have.

A DirectCounter instance must have a counter value associated with its owner table that is
updated when there is a default action assigned to the table, and a search of the table results in a
miss. If there is no default action assigned to the table, then there need not be any counter updated
when a search of the table results in a miss.

By “a default action is assigned to a table”, we mean that either the table has a default_action
table property with an action assigned to it in the P4 program, or the control plane has made an
explicit call to assign the table a default action. If neither of these is true, then there is no default
action assigned to the table.

7.7.4. Example program using counters

The following partial P4 program demonstrates the instantiation and updating of Counter and
DirectCounter externs.

typedef bit<48> ByteCounter_t;
typedef bit<32> PacketCounter_t;
typedef bit<80> PacketByteCounter_t;

const bit<32> NUM_PORTS = 512;

struct headers {
ethernet_t ethernet;
ipv4_t ipvé4;

}

control ingress(inout headers hdr,
inout metadata user_meta,
in psa_ingress_input_metadata_t istd,
inout psa_ingress_output_metadata_t ostd)

Counter<ByteCounter_t, PortId_t>(NUM_PORTS, PSA_CounterType_t.BYTES)
port_bytes_in;

DirectCounter<PacketByteCounter_t>(PSA_CounterType_t.PACKETS_AND_BYTES)
per_prefix_pkt_byte_count;

2018-11-22 12:44 P46 Portable Switch Architecture 39

7.8. Meters 7. PSA EXTERNS

action next_hop(PortId_t oport) {
per_prefix_pkt_byte_count.count();
send_to_port(ostd, oport);
}
action default_route_drop() {
per_prefix_pkt_byte_count.count();
ingress_drop(ostd) ;
}
table ipv4_da_lpm {
key = { hdr.ipv4.dstAddr: lpm; }
actions = {
next_hop;
default_route_drop;
}
default_action = default_route_drop;
// table ipv4_da_lpm owns this DirectCounter instance
psa_direct_counter = per_prefix_pkt_byte_count;

}
apply {
port_bytes_in.count(istd.ingress_port);
if (hdr.ipv4.isValid()) {
ipv4_da_lpm.apply(Q);
}
}

}

control egress(inout headers hdr,
inout metadata user_meta,
in psa_egress_input_metadata_t istd,
inout psa_egress_output_metadata_t ostd)

{
Counter<ByteCounter_t, PortId_t>(NUM_PORTS, PSA_CounterType_t.BYTES)
port_bytes_out;
apply {
// By doing these stats updates on egress, then because
// multicast replication happens before egress processing,
// this update will occur once for each copy made, which in
// this example is intentional.
port_bytes_out.count(istd.egress_port);
}
}
7.8. Meters

Meters (RFC 2698) are a more complex mechanism for keeping statistics about packets, most often
used for dropping or “marking” packets that exceed an average packet or bit rate. To mark a packet
means to change one or more of its quality of service values in packet headers such as the 802.1Q
PCP (priority code point) or DSCP (differentiated service code point) bits within the IPv4 or IPv6
type of service byte. The meters specified in the PSA are 3-color meters.

PSA meters do not require any particular drop or marking actions, nor do they automatically im-
plement those behaviors for you. Meters keep enough state, and update their state during execute ()
method calls, in such a way that they return a GREEN (also known as conform), YELLOW (exceed),

2018-11-22 12:44 P46 Portable Switch Architecture 40

7.8. Meters 7. PSA EXTERNS

or RED (violate) result. See RFC 2698 for details on the conditions under which one of these three
results is returned. The P4 program is responsible for examining that returned result, and making
changes to packet forwarding behavior as a result. The value returned by an uninitialized meter
shall be GREEN. This is in accordance with the P4 Runtime specification.

RFC 2698 describes “color aware” and “color blind” variations of meters. The Meter and
DirectMeter externs implement both. The only difference is in which execute method you use
when updating them. See the comments on the extern definitions below.

Similar to counters, there are two flavors of meters: indexed and direct. (Indexed) meters are
addressed by index, while direct meters always update a meter state corresponding to the matched
table entry or action, and from the control plane API are addressed using P4 Runtime table entry
as key.

There are many other similarities between counters and meters, including:

e The number of independently updatable meter values.

e Where meter updates are allowed in a P4 program.

e For BYTES type meters, the packet length used in the update is determined by the PSA imple-
mentation, and can vary from one PSA implementation to another.

Further similarities between direct counters and direct meters include:

e DirectMeter execute method calls must be performed within actions invoked by the table
that owns the DirectMeter instance. It is optional for such an action to call the execute
method.

e There must be a meter state associated with a DirectMeter instance’s owner table, that can
be updated when the table result is a miss. As for a DirectCounter, this state only needs to
exist if a default action is assigned to the table.

The table attribute to specify that a table owns a DirectMeter instance is psa_direct_meter. The
value of this table attribute is a DirectMeter instance name.

As for counters, if you call the execute(idx) method on an indexed meter and idx is at least
the number of meter states, so idx is out of range, no meter state is updated. The execute call
still returns a value of type PSA_MeterColor_t, but the value is undefined — programs that wish to
have predictable behavior across implementations must not use the undefined value in a way that
affects the output packet or other side effects. The example code below shows one way to achieve
predictable behavior. Note that this undefined behavior cannot occur if the value of n_meters of an
indexed meter is 2", and the type S used to construct the meter is bit<W>, since the index value
could never be out of range.

#define METER1_SIZE 100

Meter<bit<7>>(METER1_SIZE, PSA_MeterType_t.BYTES) meterl;
bit<7> idx;

PSA_MeterColor_t colori;

// ... later ...

if (idx < METER1_SIZE) {
colorl = meterl.execute(idx, PSA_MeterColor_t.GREEN);

} else {
// If idx is out of range, use a default value for colorl. One
// may also choose to store an error flag in some metadata field.
colorl = PSA_MeterColor_t.RED;

}

Any implementation will have a finite range that can be specified for the Peak Burst Size and
Committed Burst Size. An implementation should document the maximum burst sizes they support,

2018-11-22 12:44 P46 Portable Switch Architecture 41

7.8. Meters 7. PSA EXTERNS

and if the implementation internally truncates the values that the control plane requests to something
more coarse than any number of bytes, that should also be documented. It is recommended that
the maximum burst sizes be allowed as large as the number of bytes that can be transmitted across
the implementation’s maximum speed port in 100 milliseconds.

Implementations will also have finite ranges and precisions that they support for the Peak Infor-
mation Rate and Committed Information Rate. An implementation should document the maximum
rate it supports, as well as the precision it supports for implementing requested rates. It is recom-
mended that the maximum rate supported be at least the rate of the implementation’s fastest port,
and that the actual implemented rate should always be within plus or minus 0.1% of the requested
rate.

7.8.1. Meter types

enum PSA_MeterType_t {
PACKETS,
BYTES

7.8.2. Meter colors

enum PSA_MeterColor_t { RED, GREEN, YELLOW }

7.8.3. Meter
// Indexed meter with n_meters independent meter states.

extern Meter<S> {
Meter (bit<32> n_meters, PSA_MeterType_t type);

// Use this method call to perform a color aware meter update (see
// RFC 2698). The color of the packet before the method call was
// made is specified by the color parameter.

PSA_MeterColor_t execute(in S index, in PSA_MeterColor_t color);

// Use this method call to perform a color blind meter update (see
// RFC 2698). It may be implemented via a call to execute(index,
// MeterColor_t.GREEN), which has the same behavior.
PSA_MeterColor_t execute(in S index);

/*
@ControlPlaneAPI
{
reset(in MeterColor_t color);
setParams(in S index, in MeterConfig config) ;
getParams(in S index, out MeterConfig config);
}
*/

2018-11-22 12:44 P46 Portable Switch Architecture 42

7.9. Registers 7. PSA EXTERNS

7.8.4. Direct Meter

extern DirectMeter {
DirectMeter (PSA_MeterType_t type);
// See the corresponding methods for extern Meter.
PSA_MeterColor_t execute(in PSA_MeterColor_t color);
PSA_MeterColor_t execute();

/*
@ControlPlaneAPI
{
reset(in TableEntry entry, in MeterColor_t color);
void setConfig(in TableEntry entry, in MeterConfig config);
void getConfig(in TableEntry entry, out MeterConfig config);
b
*/

7.9. Registers

Registers are stateful memories whose values can be read and written during packet forwarding
under the control of the P4 program. They are similar to counters and meters in that their state
can be modified as a result of processing packets, but they are far more general in the behavior they
can implement.

Although you may not use register contents directly in table match keys, you may use the read ()
method call on the right-hand side of an assignment statement, which retrieves the current value of
the register. You may copy the register value into metadata, and it is then available for matching
in subsequent tables.

There are two different constructors for Register instances. The value returned for the uninitial-
ized variant is undefined. The value returned for the initialized variant is the one specified by the
initial_value parameter of the constructor.

A simple usage example is to verify that a “first packet” was seen for a particular type of flow. A
register cell would be allocated to the flow, initialized to “clear”. When the protocol signaled a “first
packet”, the table would match on this value and update the flow’s cell to “marked”. Subsequent
packets in the flow could would be mapped to the same cell; the current cell value would be stored
in metadata for the packet and a subsequent table could check that the flow was marked as active.

extern Register<T, S$> {
/// Instantiate an array of <size> registers. The initial value is
/// undefined.
Register (bit<32> size);
/// Initialize an array of <size> registers and set their value to
/// initial_value.
Register(bit<32> size, T initial_value);

T read (in S index);
void write (in S index, in T value);

/%
@ControlPlaneAPI
{
T read<T> (in S index);
void set (in S index, in T seed);

2018-11-22 12:44 P46 Portable Switch Architecture 43

7.9. Registers 7. PSA EXTERNS

void reset (in S index);
}
x/
}

Another example using registers is given below. It implements a packet and byte counter, where the
byte counter can be updated by a packet length specified in the P4 program, rather than one chosen
by the PSA implementation.

const bit<32> NUM_PORTS = 512;

// It would be more convenient to use a struct type to represent the
// state of a combined packet and byte count, and many other compound
// values one might wish to store in a Register instance. However,

// the latest p4test as of 2018-Feb-10 does not allow a struct type to
// be returned from a method call like Register.read().

// Refer to this Github issue for status of generalizing this:
// https://github.com/p4lang/p4-spec/issues/383

#define PACKET_COUNT_WIDTH 32

#define BYTE_COUNT_WIDTH 48

//#define PACKET_BYTE_COUNT_WIDTH (PACKET_COUNT_WIDTH + BYTE_COUNT_WIDTH)
#define PACKET_BYTE_COUNT_WIDTH 80

#define PACKET_COUNT_RANGE (PACKET_BYTE_COUNT_WIDTH-1) :BYTE_COUNT_WIDTH
#define BYTE_COUNT_RANGE (BYTE_COUNT_WIDTH-1):0

typedef bit<PACKET_BYTE_COUNT_WIDTH> PacketByteCountState_t;

action update_pkt_ip_byte_count (inout PacketByteCountState_t s,
in bit<16> ip_length_bytes)

{
s [PACKET_COUNT_RANGE] = s[PACKET_COUNT_RANGE] + 1;
s [BYTE_COUNT_RANGE] = (s[BYTE_COUNT_RANGE] +
(bit<BYTE_COUNT_WIDTH>) ip_length_bytes);
}

control ingress(inout headers hdr,
inout metadata user_meta,
in psa_ingress_input_metadata_t istd,
inout psa_ingress_output_metadata_t ostd)

Register<PacketByteCountState_t, PortId_t>(NUM_PORTS)
port_pkt_ip_bytes_in;

apply {
ostd.egress_port = (PortId_t) O;
if (hdr.ipv4.isValid()) {
@atomic {

PacketByteCountState_t tmp;
tmp = port_pkt_ip_bytes_in.read(istd.ingress_port);
update_pkt_ip_byte_count (tmp, hdr.ipv4.totallen);
port_pkt_ip_bytes_in.write(istd.ingress_port, tmp);

2018-11-22 12:44 P46 Portable Switch Architecture 44

7.10. Random 7. PSA EXTERNS

}

Note the use of the @atomic annotation in the block enclosing the read() and write() method
calls on the Register instance. It is expected to be common that register accesses will need the
@atomic annotation around portions of your program in order to behave as you desire. As stated
in the P44 specification, without the @atomic annotation in this example, an implementation is
allowed to process two packets P1 and P2 in parallel, and perform the register access operations in
this order:

// Possible order of operations for the example program if the
// @atomic annotation is _not_ used.

tmp
tmp

port_pkt_ip_bytes_in.read(istd.ingress_port); // for packet P1
port_pkt_ip_bytes_in.read(istd.ingress_port); // for packet P2

// At this time, if P1 and P2 came from the same ingress_port,
// each of their values of tmp are identical.

update_pkt_ip_byte_count(tmp, hdr.ipv4.totallen); // for packet P1
update_pkt_ip_byte_count (tmp, hdr.ipv4.totallen); // for packet P2

port_pkt_ip_bytes_in.write(istd.ingress_port, tmp); // for packet P1
port_pkt_ip_bytes_in.write(istd.ingress_port, tmp); // for packet P2
// The write() from packet P1 is lost.

Since different implementations may have different upper limits on the complexity of code that they
will accept within an @atomic block, we recommend you keep them as small as possible, subject to
maintaining your desired correct behavior.

Individual counter and meter method calls need not be enclosed in @atomic blocks to be safe —
they guarantee atomic behavior of their individual method calls, without losing any updates. Even
though the P4,4 v1.0.0 language specification currently requires that every action of a table behave
as if its entire body is annotated by an @atomic annotation, it is recommended to explicitly use
@atomic annotations inside of action bodies as if this were not the case, since (a) it is harmless, and
more importantly (b) this requirement may be removed in a near future revision of the language
specification.

As for indexed counters and meters, access to an index of a register that is at least the size of
the register is out of bounds. An out of bounds write has no effect on the state of the system. An
out of bounds read returns an undefined value. See the example in Section 7.8 for one way to write
code to guarantee avoiding this undefined behavior. Out of bounds register accesses are impossible
for a register instance with type S declared as bit<W> and size 2" entries.

7.10. Random

The Random extern provides generation of pseudo-random numbers in a specified range with a uni-
form distribution. If one wishes to generate numbers with a non-uniform distribution, you may do so
by first generating a uniformly distributed random value, and then using appropriate table lookups
and/or arithmetic on the resulting value to achieve the desired distribution.

An implementation is not required to produce cryptographically strong pseudo-random number
generation. For example, a particularly inexpensive implementation might use a linear feedback
shift register to generate values.

extern Random<T> {

2018-11-22 12:44 P46 Portable Switch Architecture 45

7.11. Action Profile 7. PSA EXTERNS

/// Return a random value in the range [min, max], inclusive.

/// Implementations are allowed to support only ranges where (max -
/// min + 1) is a power of 2. P4 developers should limit their
/// arguments to such values if they wish to maximize portability.

Random(T min, T max);
T read();

/%
@ControlPlaneAPI
{
void reset();
void setSeed(in T seed);
}
*/

7.11. Action Profile

Action profiles are used as table implementation attributes.

Action profiles provide a mechanism to populate table entries with action specifications that have
been defined outside the table entry specification. An action profile extern can be instantiated as a re-
source in the P4 program. A table that uses this action profile must specify its psa_implementation
attribute as the action profile instance.

Table entry | Key (h.f: [pm) | Action spec.
jul 01001~* set_port(1)
t2 1100* set_port(2)
t3 101~ set_port{1)

{a) Direct table.

Tahle entry | Key (h.f: [pm) | Member ref, Member ref. | Action spec.
jul 01001~* ml ml set_port{1)
t2 11007 me me set_port(2)
3 101~ ml

(b) Indirect table with action profile implementation.

Figure 4. Action profiles in PSA

Figure 4 contrasts a direct table with a table that has an action profile implementation. A direct
table, as seen in Figure 4 (a) contains the action specification in each table entry. In this example,
the table has a match key consisting of an LPM on header field h.f. The action is to set the port.
As we can see, entries t1 and t3 have the same action, i.e. to set the port to 1. Action profiles enable
sharing an action across multiple entries by using a separate table as shown in Figure 4 (b).

A table with an action profile implementation has entries that point to a member reference
instead of directly defining an action specification. A mapping from member references to action
specifications is maintained in a separate table that is part of the action profile instance defined in

2018-11-22 12:44 P46 Portable Switch Architecture 46

7.11. Action Profile 7. PSA EXTERNS

the table psa_implementation attribute. When a table with an action profile implementation is
applied, the member reference is resolved and the corresponding action specification is applied to
the packet.

Action profile members may only specify action types defined in the actions attribute of the
implemented table. An action profile instance may be shared across multiple tables only if all
such tables define the same set of actions in their actions attribute. Tables with an action profile
implementation cannot define a default action. The default action for such tables is implicitly set
to NoAction.

The control plane can add, modify or delete member entries for a given action profile instance.
The controller-assigned member reference must be unique in the scope of the action profile instance.
An action profile instance may hold at most size entries as defined in the constructor parameter.
Table entries must specify the action using the controller-assigned reference for the desired member
entry. Directly specifying the action as part of the table entry is not allowed for tables with an
action profile implementation.

extern ActionProfile {
/// Construct an action profile of ’size’ entries
ActionProfile(bit<32> size);

/%
@ControlPlaneAPI
{
entry_handle add_member (action_ref, action_data);
void delete_member (entry_handle);
entry_handle modify_member (entry_handle, action_ref, action_data);
}
*/

7.11.1. Action Profile Example

The P4 control block Ctrl in the example below instantiates an action profile ap that can contain at
most 128 member entries. Table indirect uses this instance by specifying the psa_implementation
attribute. The control plane can add member entries to ap, where each member can specify either
a foo or NoAction action. Table entries for indirect table must specify the action using the
controller-assigned member reference.

control Ctrl(inout H hdr, inout M meta) {
action foo() { meta.foo = 1; }
ActionProfile(128) ap;

table indirect {
key = {hdr.ipv4.dst_address: exact;}
actions = { foo; NoAction; }
psa_implementation = ap;

}

apply {
indirect.applyQ;
}
}

2018-11-22 12:44 P46 Portable Switch Architecture 47

7.12. Action Selector 7. PSA EXTERNS

7.12. Action Selector

Action selectors are used as table implementation attributes.

Action selectors implement yet another mechanism to populate table entries with action specifi-
cations that have been defined outside the table entry. They are more powerful than action profiles
because they also provide the ability to dynamically select the action specification to apply upon
matching a table entry. An action selector extern can be instantiated as a resource in the P4 pro-
gram, similar to action profiles. Furthermore, a table that uses this action selector must specify its
psa_implementation attribute as the action selector instance.

Table Key Member/ Group Members Member ref. | Action spec.
entry | (h.f: Ipm) Group ref. ref. mi set_port(1)
jul 01001~ gl gl ml, m2 m2 set_port(2)
2 1100% m2 g2 ml
i3 101~ g2 a3 m2

Figure 5. Action selectors in PSA

Figure 5 illustrates a table that has an action selector implementation. In this example, the table
has a match key consisting of an LPM on header field h.f. A second match type selector is used
to define the fields that are used to look up the action specification from the selector at runtime.

A table with an action action selector implementation consists of entries that point to either an
action profile member reference or an action profile group reference. An action selector instance can
be logically visualized as two tables as shown in Figure 5. The first table contains a mapping from
group references to a set of member references. The second table contains a mapping from member
references to action specifications.

When a packet matches a table entry at runtime, the controller-assigned reference of the action
profile member or group is read. If the entry points to a member then the corresponding action
specification is applied to the packet. However, if the entry points to a group, a dynamic selection
algorithm is used to select a member from the group, and the action specification corresponding
to that member is applied. The dynamic selection algorithm is specified as a parameter when
instantiating the action selector.

Action selector members may only specify action types defined in the actions attribute of the
implemented table.

Minimum requirements for a PSA implementation of action selectors:

e Support non-empty groups where every action in the same group has the same action name.

e Within the same group, support arbitrary action parameter values among different members
of the group.

e Support different action names in different groups.

e No predictable data plane behavior is required if a table entry is matched that points at an
empty group.

Optional extensions:

e Support non-empty groups where in the same group, different actions can have different action
names, as well as arbitrary action parameter values.

e Support table entries that point at an empty group. When the entry is matched, execute the
action assigned to the table property psa_empty_group_action.

The psa_empty_group_action property of a table is similar to the default_action property in the
following ways:

2018-11-22 12:44 P46 Portable Switch Architecture 48

7.12. Action Selector 7. PSA EXTERNS

e They both have actions as their values.

e The P4 source code specifies the initial value.

o If the table property psa_empty_group_action is not given in the P4 source code, its value
is NoAction().

e They may have a const modifier, indicating that control software is not allowed to change this
action.

e In the absence of a const modifier, the control software is allowed to change the action assigned
to psa_empty_group_action.

PSA implementers should note that supporting empty groups with predictable data plane behavior
may be required in a future version of PSA. In some cases, it may be possible for the combination
of a PSA data plane plus its PARuntime server software to achieve this desired behavior, as far as
the P4Runtime client controller software can observe. See Appendix G.

An action selector instance may be shared across multiple tables only if all such tables define the
same set of actions in their actions attribute. Furthermore, the selector match fields for such tables
must be identical and must be specified in the same order across all tables sharing the selector.
Tables with an action selector implementation cannot define a default action. The default action for
such tables is implicitly set to NoAction.

The dynamic selection algorithm requires a field list as an input for generating the index to
a member entry in a group. This field list is created by using the match type selector when
defining the table match key. The match fields of type selector are composed into a field list in
the order they are specified. The composed field list is passed as an input to the action selector
implementation. It is illegal to define a selector type match field if the table does not have an
action selector implementation.

The control plane can add, modify or delete member and group entries for a given action selector
instance. An action selector instance may hold at most size member entries as defined in the con-
structor parameter. The number of groups may be at most the size of the table that is implemented
by the selector. Table entries must specify the action using a reference to the desired member or
group entry. Directly specifying the action as part of the table entry is not allowed for tables with
an action selector implementation.

extern ActionSelector {
/// Construct an action selector of ’size’ entries
/// @param algo hash algorithm to select a member in a group
/// @param size number of entries in the action selector
/// Q@param outputWidth size of the key
ActionSelector (PSA_HashAlgorithm_t algo, bit<32> size, bit<32> outputWidth);

/*
@ControlPlaneAPI
{
entry_handle add_member (action_ref, action_data);
void delete_member (entry_handle);
entry_handle modify_member (entry_handle, action_ref, action_data);
group_handle create_group O;
void delete_group (group_handle);
void add_to_group (group_handle, entry_handle);
void delete_from_group (group_handle, entry_handle);
}
*/

2018-11-22 12:44 P46 Portable Switch Architecture 49

7.13. Timestamps 7. PSA EXTERNS

7.12.1. Action Selector Example

The P4 control block Ctrl in the example below instantiates an action selector as that can contain
at most 128 member entries. The action selector uses a crcl6 algorithm with output width of 10
bits to select a member entry within a group.

Table indirect_with_selection uses this instance by specifying the psa_implementation table
property as shown. The control plane can add member and group entries to as. Each member can
specify either a foo or NoAction action. When programming the table entries, the control plane
does not include the fields of match type selector in the match key. The selector match fields are
instead used to compose a list that is passed to the action selector instance. In the example below,
the list {hdr.ipvd.src_address, hdr.ipv4.protocol} is passed as input to the crcl6 hash algorithm
used for dynamic member selection by action selector as.

control Ctrl(inout H hdr, inout M meta) {
action foo() { meta.foo = 1; }
ActionSelector (PSA_HashAlgorithm_t.CRC16, 128, 10) as;

table indirect_with_selection {

key = {
hdr.ipv4.dst_address: exact;
hdr.ipv4.src_address: selector;
hdr.ipv4.protocol: selector;

X

actions = { foo; NoAction; }

psa_implementation = as;

3

apply {
indirect_with_selection.apply();
}
}

Note that the management of action selector entries in the presence of link failures is outside the
scope of the PSA. Fast-failover requires information from the control plane and will be addressed as
part of the P4 Runtime API® working group.

7.13. Timestamps

A PSA implementation provides an ingress_timestamp value for every packet in the Ingress
control block, as a field in the struct with type psa_ingress_input_metadata_t. This timestamp
should be close to the time that the first bit of the packet arrived to the device, or alternately, to the
time that the device began parsing the packet. This timestamp is not automatically included with the
packet in the Egress control block. A P4 program wishing to use the value of ingress_timestamp
in egress code must copy it to a user-defined metadata field that reaches egress.

A PSA implementation also provides an egress_timestamp value for every packet in the Egress
control block, as a field of the struct with type psa_egress_input_metadata_t.

One expected use case for timestamps is to store them in tables or Register instances to im-
plement checking for timeout events for protocols, where precision on the order of milliseconds is
sufficient for most protocols.

5The P4 Runtime API is defined as a Google Protocol Buffer .proto file and an accompanying English specification
document here: https://github.com/p4lang/p4runtime

2018-11-22 12:44 P46 Portable Switch Architecture 50

https://github.com/p4lang/p4runtime

7.13. Timestamps 7. PSA EXTERNS

Another expected use case is INT (In-band Network Telemetry®), where precision on the order
of microseconds or smaller is necessary to measure queueing latencies that differ by those amounts.
It takes only 0.74 microseconds to transmit a 9 Kbyte Ethernet jumbo frame on a 100 gigabit per
second link.

For these applications, it is recommended that an implementation’s timestamp increments at least
once every microsecond. Incrementing once per clock cycle in an ASIC or FPGA implementation
would be a reasonable choice. The timestamp should increment at a constant rate over time. For
example, it should not be a simple count of clock cycles in a device that implements dynamic
frequency scaling”.

Timestamps are of type Timestamp_t, which is type bit<W> for a value of W defined by the
implementation. Timestamps are expected to wrap around during the normal passage of time. It
is recommended that an implementation pick a rate of advance and a bit width such that wrapping
around occurs at most once every hour. Making the wrap time this long (or longer) makes timestamps
more useful for several use cases.

e Checking for timeouts of protocol hello / keep-alive traffic that is on the order of seconds or
minutes.

e If timestamps are placed into packets without converting them to other formats, then external
data analysis systems using those timestamps will in many cases need to do so, e.g. to compare
timestamps stored in packets by different PSA devices. These systems will need different
formulas and/or parameters to perform this conversion for each wrap period, or to add extra
external time references to the recorded data. The extra data required for accurate conversion
is lower, and the likelihood of conversion mistakes is lower, if the timestamp values wrap less
often.

e If timestamps are converted to other formats within a P4 program, it will need access to
parameters that are likely to change every wrap time, e.g. at least a “base value” to add some
calculated value to. A straightforward way to do this requires the control plane to update
these values at least once or twice per timestamp wrap time.

e Programs that wish to use (egress_timestamp - ingress_timestamp) to calculate the
queueing latency experienced by a packet need the wrap time to exceed the maximum queueing
latency.

Examples of the number of bits required for wrap times of at least one hour:

e A 32-bit timestamp advancing by 1 per microsecond takes 1.19 hours to wrap.
e A 42-bit timestamp advancing by 1 per nanosecond takes 1.22 hours to wrap.

A PSA implementation is not required to implement time synchronization, e.g. via PTP® or NTP?.
The control plane API excerpt below is intended to be added as part of the P4 Runtime API.

// The TimestampInfo and Timestamp messages should be added to the
// "oneof" inside of message "Entity".

// TimestampInfo is only intended to be read. Attempts to update this
// entity have no effect, and should return an error status that the
// entity is read only.

message TimestampInfo {
// The number of bits in the device’s ‘Timestamp_t¢ type.
uint32 size_in_bits = 1;
// The timestamp value of this device increments

Shttp://p4.org/p4/inband-network-telemetry
"https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
8https://en.wikipedia.org/wiki/Precision_Time_Protocol
9https://en.wikipedia.org/wiki/Network_Time_Protocol

2018-11-22 12:44 P46 Portable Switch Architecture 51

http://p4.org/p4/inband-network-telemetry
https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
https://en.wikipedia.org/wiki/Precision_Time_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol

7.14. Packet Digest 7. PSA EXTERNS

// ‘increments_per_period‘ times every ‘period_in_seconds‘ seconds.
uint64 increments_per_period = 2;
uint64 period_in_seconds = 3;

}

// The timestamp value can be read or written. Note that if there are
// already timestamp values stored in tables or ‘Register‘ instances,
// they will not be updated as a result of writing this timestamp

// value. Writing the device timestamp is intended only for

// initialization and testing.

message Timestamp {
bytes value = 1;
}

For every packet P that is processed by ingress and then egress, with the minimum possible latency in
the packet buffer, it is guaranteed that the egress_timestamp value for that packet will be the same
as, or slightly larger than, the ingress_timestamp value that the packet was assigned on ingress.
By “slightly larger than”, we mean that the difference (egress_timestamp - ingress_timestamp)
should be a reasonably accurate estimate of this minimum possible latency through the packet buffer,
perhaps truncated down to 0 if timestamps advance more slowly than this minimum latency.

Consider two packets such that at the same time (e.g. the same clock cycle), one is assigned
its value of ingress_timestamp near the time it begins parsing, and the other is assigned its value
of egress_timestamp near the time that it begins its egress processing. It is allowed that these
timestamps differ by a few tens of nanoseconds (or by one “tick” of the timestamp, if one tick is
larger than that time), due to practical difficulties in making them always equal.

Recall that the binary operators + and - on the bit<W> type in P4 are defined to perform wrap-
around unsigned arithmetic. Thus even if a timestamp value wraps around from its maximum value
back to 0, you can always calculate the number of ticks that have elapsed from timestamp ¢1 until
timestamp t2 using the expression (¢2—t1) (if more than 2" ticks have elapsed, there will be aliasing
of the result). For example, if timestamps were W >= 4 bits in size, t1 = 2V — 5, and 2 = 3, then
(t2 — t1) = 8. There is thus no need for conditional execution to calculate such elapsed times.

It is sometimes useful to minimize storage costs by discarding some bits of a timestamp value
in a P4 program for use cases that do not need the full wrap time or precision. For example, an
application that only needs to detect protocol timeouts with an accuracy of 1 second can discard
the least significant bits of a timestamp that change more often than every 1 second.

Another example is an application that needed full precision of the least significant bits of a
timestamp, but the combination of the control plane and P4 program are designed to examine all
entries of a Register array where these partial timestamps are stored more often than once every 5
seconds, to prevent wrapping. In that case, the P4 program could discard the most significant bits of
the timestamp so that the remaining bits wrap every 8 seconds, and store those partial timestamps
in the Register instance.

7.14. Packet Digest

A digest is one mechanism to send a message from the data plane to the control plane. Another
is to send a packet to the control plane via the port numbered PSA_PORT_CPU. Sending a packet to
port PSA_PORT_CPU typically sends most or all of the original packet headers, and perhaps also the
payload, each as a separate message to be received and processed by the control plane. The contents
of a digest for one packet are typically much smaller than the packet. A PSA implementation can
take advantage of this, e.g. it might combine digests for multiple packets into larger messages, to
reduce the rate of messages sent to the control plane.

A digest message may contain any values from the data plane. Because a P4 program may have

2018-11-22 12:44 P46 Portable Switch Architecture 52

7.14. Packet Digest 7. PSA EXTERNS

multiple Digest instances, each with different message contents, the PSA implementation as a whole
must provide the ability to distinguish the messages created by different Digest instances from each
other.

In PSA, a digest is created by calling the pack method on the digest instance. The argument is
the value to be included in the digest, often a collection of values in a P4 struct type. The compiler
decides the best serialization format to send the digest contents to a local software agent, which is
responsible for sending the digest data in a form defined by the P4 Runtime API specification.

A PSA program can instantiate multiple Digest instances in the same IngressDeparser control
block, and make at most one pack call on each instance during a single execution of this control
block. A PSA implementation need not support the use of the Digest extern in the EgressDeparser
control block.

There is no requirement that if multiple Digest messages are created while processing the same
packet, that these messages must be “bundled together” in any way. An implementation is free to
put them in separate queues per Digest instance, for example, and they may arrive to the controller
completely separate from each other, and in a different order than they were generated. It is
recommended that a PSA implementation send Digest messages from a single Digest instance to
the control plane in the order they were generated.

If you wish to associate multiple Digest messages from different instances with each other in
control plane software, it may suit your purposes to include a common sequence number or timestamp
in all Digest messages generated by the same packet. Then use those in the control plane for
correlation of different messages.

Since high speed PSA implementations are expected to be able to generate digests much faster
than control software can consume them, it is expected that loss of such digest messages will occur
if the data plane generates them too quickly. It is recommended that PSA implementations main-
tain a count of digest messages that the data plane creates, but do not reach the control plane,
independently for each digest instance.

extern Digest<T> {

Digest(); /// define a digest stream to the control plane

void pack(in T data); /// emit data into the stream

/%

@ControlPlaneAPI

{

T data; /// If T is a list, control plane generates a struct.
int unpack(T& data); /// unpacked data is in T&, int return status code.

}

*/

}

Below is a part of an example program that demonstrates using a digest to notify the control plane
about source Ethernet MAC addresses and ingress ports of packets that have not been seen before.

struct mac_learn_digest_t {
EthernetAddress srcAddr;
PortId_t ingress_port;
}

struct metadata {
bool send_mac_learn_msg;
mac_learn_digest_t mac_learn_msg;

}

// This is part of the functionality of a typical Ethernet learning bridge.

2018-11-22 12:44 P46 Portable Switch Architecture 53

7.14. Packet Digest 7. PSA EXTERNS

// The control plane will typically enter the _same_ keys into the

// learned_sources and 12_tbl tables. The entries in 12_tbl are searched for
// the packet’s dest MAC address, and on a hit the resulting action tells

// where to send the packet.

// The entries in learned_sources are the same, and the action of every table
// entry added is NoAction. If there is a _miss_ in learned_sources, we want
// to send a message to the control plane software containing the packet’s

// source MAC address, and the port it arrived on. The control plane will

// make a decision about creating an entry with that packet’s source MAC

// address into both tables, with the 12_tbl sending future packets out this
// packet’s ingress_port.

// This is only a simple example, e.g. there is no implementation of
// "flooding" shown here, typical when a learning bridge gets a miss when
// looking up the dest MAC address of a packet.

control ingress(inout headers hdr,
inout metadata meta,
in psa_ingress_input_metadata_t istd,
inout psa_ingress_output_metadata_t ostd)

{

action unknown_source () {
meta.send_mac_learn_msg = true;
meta.mac_learn_msg.srcAddr = hdr.ethernet.srcAddr;
meta.mac_learn_msg.ingress_port = istd.ingress_port;
// meta.mac_learn_msg will be sent to control plane in
// IngressDeparser control block

}

table learned_sources {
key = { hdr.ethernet.srcAddr : exact; }
actions = { NoAction; unknown_source; }
default_action = unknown_source();

}

action do_L2_forward (PortlId_t egress_port) {
send_to_port(ostd, egress_port);

}

table 12_tbl {
key = { hdr.ethernet.dstAddr : exact; }
actions = { do_L2_forward; NoAction; }
default_action = NoAction();

}

apply {
meta.send_mac_learn_msg = false;
learned_sources.applyQ;
12_tbl.apply O ;

}

}

control IngressDeparserImpl(packet_out packet,

2018-11-22 12:44 P46 Portable Switch Architecture 54

8. ATOMICITY OF CONTROL PLANE API OPERATIONS

out empty_metadata_t clone_i2e_meta,
out empty_metadata_t resubmit_meta,
out empty_metadata_t normal_meta,
inout headers hdr,

in metadata meta,

in psa_ingress_output_metadata_t istd)

CommonDeparserImpl () common_deparser;
Digest<mac_learn_digest_t>() mac_learn_digest;
apply {
if (meta.send_mac_learn_msg) {
mac_learn_digest.pack(meta.mac_learn_msg) ;

}
common_deparser.apply(packet, hdr);

8. Atomicity of control plane API operations

All table add, delete, and modify operations must be atomic relative to packet forwarding. That is,
for every table apply operation, and every control plane operation on a table that adds, deletes, or
modifies one table entry, the apply operation should behave as if that control plane operation has
not yet occurred, or as if the control plane operation is complete. The P4 program should never
behave as if the control plane operation is partially complete.

Note that this requirement is for every table apply operation individually. A PSA implementation
is not required to support performing multiply apply operations on the same table in the same
invocation of a control block. If it does support that, it is allowed that a control plane update may
occur after one apply call by a packet to a table, but before the next apply call by the same packet.

A PSA implementation should give an error and fail to compile P4 programs for which it cannot
meet this atomicity requirement. For example, perhaps the implementation can only satisfy this
requirement for tables with actions having at most 128 bits of action parameters, and thus gives an
error if you attempt to compile a P4 program that contains an action with more bits of parameters.

For example, suppose a table T has an action A with 100 total bits of action parameters, and
the control plane has added a table entry with a search key K and action A. Later the control plane
performs an update operation on the entry with key K that leaves the key K the same, but changes
the 100 bits of action parameters. Every packet doing an apply on table T and matching the entry
with key K should execute action A with either the old 100 bits of action parameters, or the new 100
bits of action parameters.

The P4 Runtime API enables controllers to create “batch” messages that perform more than one
single operation, as defined here. If so, a PSA implementation need only ensure that each single
operation is atomic. There is no requirement that a sequence of multiple table entry add, delete, or
update operations should be atomic.

The same applies for all control plane API operations on externs, unless the control plane oper-
ation explicitly documents otherwise.

In particular, ActionProfile and ActionSelector single operations, such as adding a member to
a group, removing a member from a group, adding an empty group, deleting an empty group, or
modifying the action parameters of an action added earlier to a group, should all be atomic.

Also, a control plane read, or write, of a single element of a Register array should be atomic, and
behave as if it occurred before or after (but not during) any P4 program’s section of code labeled
with the @atomic annotation. There is no control plane operation on a Register that can atomically
read an element, then write back a modified value.

2018-11-22 12:44 P46 Portable Switch Architecture 55

A. APPENDIX: OPEN ISSUES

Advice for P4 developers: If you desire a capability for the control plane to atomically read,
modify, then write back a Register array element, you should write your P4 program such that the
desired read, modify, and write operation can be done by a packet that your control plane can inject
into the data plane, e.g. via packet in / packet out P4 Runtime API operations.

A high speed PSA implementation might process hundreds or thousands of packets between each
single control plane operation. There are common “write tables from later to earlier in the data
flow”, sometimes also called “back to front” or “pointer flipping”, techniques used by existing control
planes to achieve an effect that is similar to making a sequence of many table entry operations
atomic relative to packet forwarding. Recent research analyzes these techniques in a more general
setting!?.

A. Appendix: Open Issues

As with any work in progress, we have a number of open issues that are under discussion in the
working group. In addition to the TBDs in the document, there a number of larger issues that are
summarized here:

A.1. Action Selectors

The size parameter in the action _selector instance that defines the maximum number of members in
a selector. In some cases it might be useful to allow the controller to dynamically provision resources
on the selector or to utilize different selector sizes on different targets, while using a common P4
program.

We also need to formalize the interaction of action profiles and action selectors with counters
and meters.

A.2. Observation and control of congestion

The current PSA does not provide any mechanisms to observe if particular output ports or queues
are leading to congestion in the packet buffer. Thus it is not possible without using mechanisms
defined outside of PSA to implement a feature like Explicit Congestion Notification (ECN)!!. One
possibility here is to define a small field, perhaps only 1 bit, that is part of the metadata associated
with each packet as it begins egress processing. This field would indicate “how much congestion”
the packet experienced in the packet buffer.

There is also currently no way defined in PSA for ingress P4 code to send information about
a packet to the packet buffer that might influence the behavior of a congestion control algorithm,
such as Approximate Fair Drop (AFD). This is partly because of the variety of congestion control
mechanisms in use by switches today.

It would be desirable to define in PSA a small set of fields about a packet that would be useful
inputs to multiple congestion control algorithms. One possibility is a hash of the packet’s “flow
id”, often implemented as a hash of packet header fields like IP source and destination address, IP
protocol, and optionally TCP/UDP source and destination ports. Given that P4 programmable
devices can implement network protocols other than IP, including custom ones, a more general
mechanism is desirable in PSA devices.

A.3. Enabling full implementation of In-band Network Telemetry

One promising use case for P4 programmable network devices is to implement In-band Network
Telemetry®. While PSA mechanisms such as timestamps enable a significant portion of INT features

10Pavol Cerny, Nate Foster, Nilesh Jagnik, and Jedidiah McClurg, “Consistent Network Updates in Polynomial

Time”. International Symposium on Distributed Computing (DISC), Paris, France, September 2016.
Hhttps://en.wikipedia.org/wiki/Explicit_Congestion_Notification
Shttp://p4.org/ps/inband-network-telemetry

2018-11-22 12:44 P46 Portable Switch Architecture 56

https://en.wikipedia.org/wiki/Explicit_Congestion_Notification
http://p4.org/p4/inband-network-telemetry

A.4. PSA prdfleA PPENDIX: IMPLEMENTATION OF THE INTERNETCHECKSUM EXTERN

to be implemented, they do not yet define any mechanisms to access information such as egress port
link utilization or queue occupancy!?.

A.4. PSA profiles

We are considering whether to specify different limits that a certain PSA implementation has to
have in order for the implementation to be considered compliant. The main point of PSA is to
enable a variety of devices, and thus limits may be artificial. On the other hand, for most interesting
applications, it is necessary to support a minimum of functionality.

B. Appendix: Implementation of the InternetChecksum extern

Besides RFC 1461, RFC 1071 and RFC 1141 also contain useful tips on efficiently computing the
Internet checksum, especially in software implementations.

Here we give reference implementations for the methods of the InternetChecksum extern, spec-
ified with the syntax and semantics of P44, with extensions of a for loop and a return statement
for returning a value from a function.

The minimum internal state necessary for one instance of an InternetChecksum object is a 16-bit
bit vector, here called sum.

// This is one way to perform a normal one’s complement sum of two
// 16-bit values.
bit<16> ones_complement_sum(in bit<16> x, in bit<16> y) {

bit<17> ret = (bit<17>) x + (bit<17>) y;

if (ret[16:16] == 1) {

ret = ret + 1;
X
return ret[15:0];

bit<16> sum;

void clear() {
sum = 0;

}

// Restriction: data is a multiple of 16 bits long
void add<T>(in T data) {
bit<16> d;
for (each 16-bit aligned piece d of data) {
sum = ones_complement_sum(sum, d);
}
}

// Restriction: data is a multiple of 16 bits long
void subtract<T>(in T data) {
bit<16> d;
for (each 16-bit aligned piece d of data) {
// ~d is the negative of d in one’s complement arithmetic.
sum = ones_complement_sum(sum, ~d);

3

2https://github.com/p4lang/pi-spec/issues/510

2018-11-22 12:44 P46 Portable Switch Architecture 57

https://github.com/p4lang/p4-spec/issues/510

C. APPENDIX: EXAMPLE IMPLEMENTATION OF COUNTER EXTERN

}

// The Internet checksum is the one’s complement _of_ the one’s

// complement sum of the relevant parts of the packet. The methods

// above calculate the one’s complement sum of the parts in the

// variable ’sum’. get() returns the bitwise negation of ’sum’, which
// is the one’s complement of ’sum’.

bit<16> get () {
return “sum;

}

bit<16> get_state() {
return sum;

}

void set_state(bit<16> checksum_state) {
sum = checksum_state;

}

C. Appendix: Example implementation of Counter extern

The example implementation below, in particular the function next_counter_value, is not intended

to restrict PSA implementations. The storage format for PACKETS_AND_BYTES type counters demon-

strated there is one example of how it could be done. Implementations are free to store state in

other ways, as long as the control plane API returns the correct packet and byte count values.
Two common techniques for counter implementations in the data plane are:

e wrap around counters
e saturating counters, that ‘stick’ at their maximum possible value, without wrapping around.

This specification does not mandate any particular approach in the data plane. Implementations
should strive to avoid losing information in counters. One common implementation technique is
to implement an atomic “read and clear” operation in the data plane that can be invoked by the
control plane software. The control plane software invokes this operation frequently enough to
prevent counters from ever wrapping or saturating, and adds the values read to larger counters in
driver memory.

Counter (bit<32> n_counters, PSA_CounterType_t type) {
this.num_counters = n_counters;
this.counter_vals = new array of size n_counters, each element with type W;
this.type = type;
if (this.type == PSA_CounterType_t.PACKETS_AND_BYTES) {
// Packet and byte counts share storage in the same counter
// state. Should we have a separate constructor with an
// additional argument indicating how many of the bits to use
// for the byte counter?
W shift_amount = TBD;
this.shifted_packet_count = ((W) 1) << shift_amount;
this.packet_count_mask = (7((W) 0)) << shift_amount;
this.byte_count_mask = “this.packet_count_mask;

2018-11-22 12:44 P46 Portable Switch Architecture 58

D. APPENDIX: RATIONALE FOR DESIGN

W next_counter_value(W cur_value, PSA_CounterType_t type) {
if (type == PSA_CounterType_t.PACKETS) {
return (cur_value + 1);
}
// Exactly which packet bytes are included in packet_len is
// implementation-specific.
PacketLength_t packet_len = <packet length in bytes>;
if (type == PSA_CounterType_t.BYTES) {
return (cur_value + packet_len);
}
// type must be PSA_CounterType_t.PACKETS_AND_BYTES
// In type W, the least significant bits contain the byte
// count, and most significant bits contain the packet count.
// This is merely one example storage format. Implementations
// are free to store packets_and_byte state in other ways, as
// long as the control plane API returns the correct separate
// packet and byte count values.
W next_packet_count = ((cur_value + this.shifted_packet_count) &
this.packet_count_mask) ;
W next_byte_count = (cur_value + packet_len) & this.byte_count_mask;
return (next_packet_count | next_byte_count);

3

void count(in S index) {
if (index < this.num_counters) {
this.counter_vals[index] = next_counter_value(this.counter_vals[index],
this.type);
} else {
// No counter_vals updated if index is out of range.
// See below for optional debug information to record.

}

Optional debugging information that may be kept if an index value is out of range includes:

e Number of times this occurs.

e A FIFO of the first N out-of-range index values that occur, where N is implementation-defined
(e.g. it might only be 1). Extra information to identify which count () method call in the P4
program had the out-of-range index value is also recommended.

D. Appendix: Rationale for design

D.1. Why egress processing?

Question: Why is it useful to have separate ingress vs. egress processing in a switch device?

There have been packet processing ASICs built that effectively only do ‘ingress’ processing, then
go to a packet buffer with one or more queues, and then go out of the device, effectively being
restricted to no or “empty” egress processing.

There are a few things that are trickier to do in such a device.

1. Last-nanosecond changes to the packet

If you want to measure the queuing latency through the device, and put a measurement of this

2018-11-22 12:44 P46 Portable Switch Architecture 59

D.2. No output port change during egress D. APPENDIX: RATIONALE FOR DESIGN

quantity inside the packet somewhere, it is in general not possible to know the queueing latency
before the packet is sent to the packet buffer. There are special cases where you can predict it,
e.g. when there is a single FIFO queue feeding a constant bit rate output port, with nothing like
Ethernet pause flow control.

But if you have variable bit rate links, e.g. because of things like Ethernet pause flow control, or
Wi-Fi signal quality changes, or if you have multiple class-of-service queues with a scheduling policy
between them like weighted fair queueing, then it is not possible to predict at the time the packet
is enqueued, when it will be dequeued. The queueing latency depends upon unknown future events,
such as whether Ethernet pause frames will arrive, or how many and what size of packets arriving
in the near future will be put into which class of service queues for the same output port.

In such cases, having egress processing for taking the measurement, after it is known and easy
to calculate as “dequeue time - enqueue time”, allows the egress processing to modify the packet
further.

2. Multicast efficiency and flexibility

It is possible in a PSA device to handle multicast by doing a recirculate plus clone operation for
each of N copies to be made, but this reduces the processing capacity of ingress that is available to
newly arriving packets, in particular newly arriving packets that you might consider more important
to keep than the multicast packets.

By designing a packet buffer that can take a packet with a ‘multicast group id’, which the control
plane configures to make copies to a selected set of output ports, it frees up the part of the system
that performs ingress processing to accept new packets more quickly, and at a more predictable rate.

There could still be a challenge in designing the packet replication portion of the system not to
fall behind when many multicast packets to be replicated to many output ports arrive close together
in time, but it is fairly easy to separate the concerns of multicast from unicast packets. For example,
a device implementer could prioritize unicast packets so that they are not slowed down if multicast
replication is falling behind.

Once you have multicast designed in this way, there are still multicast use cases where one
needs to process different copies of the packet differently. For example, the copy going out port 5
might need a VLAN tag of 7 placed in its header, whereas the copy going out port 2 might need a
VLAN tag of 18 placed in its header. Similarly for multicast packets entering one of many flavors
of tunnels, e.g. VXLAN, GRE, etc. By doing this per-copy modifications in egress processing, the
packet replication logic can be kept very simple — just make identical copies of the packet as ingress
finished with it, except for some kind of unique ‘id” on each copy that egress processing can use to
distinguish them.

D.2. No output port change during egress

Question: Why can’t my P4 program change the output port during egress processing?

In a network device that has many input and output ports, packets can arrive at or near the
same time on multiple input ports, all destined for the same output port.

Packet buffers are typically designed into such network devices, to store the packets that cannot
be sent out immediately, absorbing this short term congestion.

For a given output port P, we now wish to retrieve packets from the packet buffer at a rate that
is equal to the rate we will send them to port P, typically equal to the maximum bit rate that it is
possible to send data out of port P.

Packet scheduling algorithms such as weighted fair queueing, and many others, have been devel-
oped that can determine which among a set of potentially many FIFO queues that a packet should
be read from next, and sent out on the port.

These link scheduling algorithms are real time algorithms with very tight timing constraints. If
they go too slow, the output port goes idle and its capacity is wasted. If they go too fast, we read
packets from the packet buffer faster than they can be transmitted on the port, and we are back

2018-11-22 12:44 P46 Portable Switch Architecture 60

D.3. Ingress deparser and egress parser E. APPENDIX: MULTI-PIPELINE PSA DEVICES

at the same problem we had originally — either drop some of the packets, or store them somewhere
again until the port is ready to transmit them.

Such a scheduling algorithm that handles multiple output ports must know which output port
all packets are destined to, before they are put into the packet buffer. If that target output port can
be changed after the packet is read out, then we can simultaneously overload one output port while
starving another.

That is why the egress_port of a packet must be selected during ingress processing, and egress
processing is not allowed to change it.

These scheduling algorithms also need to know the size of each packet, i.e. the size as it will be
when transmitted on the port.

It is possible in egress P4 code to drop a packet, or to change the size of the packet by adding
or removing headers. Very likely P4-programmable network devices will have their scheduling al-
gorithms run just slightly faster than the port to handle cases where many packets in a row are
decreased in size during egress processing, and have tight control loops monitoring the size of pack-
ets leaving egress processing to make small adustments in the rate that the scheduling algorithm
operates for each port. Either that, or they will just leave some fraction of the output port’s capacity
unused during times when all packet sizes are being decreased.

Certainly if there are long durations of time when egress decides to drop all packets to an output
port, that port will go idle. The scheduling algorithm implementations are all built with a finite
maximum packet scheduling rate.

D.3. Ingress deparser and egress parser

Question: P4;4 did not have an ingress deparser, or an egress parser. Why does PSA have these
things?

P44, did not have these things explicitly, but there was also not much explicitly stated in the
P4,, specification about what data about each packet was carried from ingress to egress. Often such
things were left implicit. Some implementations have an ingress deparser whose order of emitting
headers is auto-generated from the P4,4 program’s parser code. This leads to restrictions on your
P44 program, not stated in the P4,4 specification, that the contents of your headers and metadata
must be in a state where if you deparse at that point, then your P4,4 parser code must be able to
parse that packet, or else the device will fail to parse it in the (implicit) egress parser.

By making the ingress deparser and egress parser explicit, we hope to make this behavior more
defined, and more portable across different PSA implementations. We expect that the common case
will be that the ingress and egress parsers will have much (or all) code in common with each other,
and this is easy to do using P4;4’s capability for one parser to call another, i.e. you can write a
common parser, then call it from your ingress and egress parsers.

You can also choose to make the two parsers different, and have full control over the differences
between them. For example, you might wish your egress parser to handle extra headers that you
only put onto cloned packets, that should never appear on packets from input ports.

Similarly for the ingress deparser. By making this an explicit and separate control block, you
now have full control over exactly what data about a packet is included when it is sent to the packet
buffer, and what is not. In P44, it was implicit that “all packet metadata used somewhere in egress
code” was carried along with each packet. This can still be done in P4;4 programs for the PSA, but
now you must be explicit in doing so. With PSA, you now have a way to restrict how much data is
carried with each packet, which can be important if the I/O bandwidth of the packet buffer becomes
a bottleneck.

E. Appendix: Multi-pipeline PSA devices

The highest packet rate network devices today are ASICs running at a clock rate on the order of
1 to 2 GHz. This discussion will assume 1 GHz for the sake of a concrete numerical example, but

2018-11-22 12:44 P46 Portable Switch Architecture 61

E. APPENDIX: MULTI-PIPELINE PSA DEVICES

everything discussed here scales linearly with the clock rate.

It is common to design a portion of a network ASIC such that it can start processing a new
packet once every clock cycle, and finish a packet every clock cycle. The latency might be hundreds
of clock cycles from starting a packet until it is complete. P4 tables in such ASICs are typically
implemented using logic such as TCAMs and SRAMs. TCAM designs can do 1 search per clock
cycle. The lowest area and power SRAMs can do 1 read or 1 write per clock cycle.

While there are “multi ported” SRAM designs that can be read and/or written multiple times
per clock cycle, these have a noticeable increase in area and power over the “single ported” designs
that are limited to 1 access per cycle. If multi ported TCAM designs even exist, the cost premium
for multi-ported TCAMs is likely to be even higher than the cost premium for multi-ported SRAMs.
The typical way to achieve higher TCAM search rates is via parallelism, by creating multiple copies
of the desired TCAM, which is a linear increase in area and power (at least).

Due to these issues, if one wishes to create a switch ASIC that achieves a packet processing rate
of N times the clock rate, e.g. 2 billion packets per second in a 1 GHz ASIC, the most straightforward
way to do this is to take advantage of the fact that packet processing is (mostly) an embarrasingly
parallel problem!?, and create a device with N pipelines'®, each pipeline processing packets at 1
billion packets per second.

A PSA device designed in this way would typically have N ingress pipelines, plus N egress
pipelines. It is common to assign multiple physical ports of the switch ASIC to each pipeline in
a hard-wired fashion, e.g. a device with 32 100 Gigabit Ethernet ports might physically hard-wire
ports 0 through 15 to pipeline 0, and ports 16 through 31 to pipeline 1. All packets received on
ports 0 through 15 will be processed by ingress pipeline 0, then go to the packet buffer (if they were
not dropped in ingress), then go to egress pipeline 0 if ingress chose output port 0 through 15, or go
to egress pipeline 1 if ingress chose output port 16 through 31.

In such a device, typically you will want the same P4 program to be run on every one of these
N ingress pipelines, and every one of the N egress pipelines.

It is physically possible in such a device for the control plane to install different table entries in
the different pipelines, and there are use cases where this can help achieve higher scale in number
of usable table entries. For example, perhaps you have an ingress table with the ingress port as one
of the fields in its search key. If this is the case, the packet processing behavior is the same even if
table entries for port X are installed only in the ingress pipeline that processes packets from port X.
Installing that table entry in the other pipelines would be an unnecessary use of table space, since
it could never be matched. Whether the device-dependent control software of such a PSA device
enables taking advantage of such space savings is implementation dependent.

Regardless of this issue, applying tables in P4 is an embarrassingly parallel activity, because as
long as table entries are installed where they might be matched, pipelines can operate completely
independently of each other with no communication between them (one small exception is described
below). The same is true for most PSA externs, e.g. ActionProfile, ActionSelector, Checksum,
Digest, Hash, and Random. What P4 tables and these externs have in common is: either the P4
program behavior cannot modify their state at all (e.g. tables, ActionProfile, ActionSelector),
or can only modify it in a way that does not affect the processing of other packets (e.g. Checksum,
Digest, Hash). Random is a special case here: updating the state of a pseudo-random number
generator can affect the processing of other packets, but this is typically not a concern for the way
that pseudo-random numbers are used (e.g. randomly choosing packets to drop or mark in Random
Early Detection).

For counters, there is counter state maintained independently in each pipeline, but if correspond-
ing counter entries in each pipeline count “the same thing” (e.g. packets matching a table entry with

3https://en.wikipedia.org/wiki/Embarrassingly_parallel

14Here and elsewhere in P4 specification documents, the term “pipeline” refers to a portion of a P4 implementation
that implements, for example, the behavior of IngressParser, Ingress, then IngressDeparser in PSA. This is by now
traditional in P4 specifications, and although we will not try to change that here, note that there are other reasonable
hardware designs that can accomplish this goal that few would call a pipeline, e.g. a collection of CPU cores running
in parallel, each processing different packets.

2018-11-22 12:44 P46 Portable Switch Architecture 62

https://en.wikipedia.org/wiki/Embarrassingly_parallel

F. APPENDIX: PACKET ORDERING

key X installed in all pipelines), then it is straightforward to add up the corresponding counter values
from all pipelines.

Consider a device where meter state is maintained independently in each pipeline. If you have a
multi-pipeline PSA device, and wish to achieve the effect: “meter all packets matching table entry
X to at most Y bytes per second”, this is not an embarrassingly parallel problem. It could be done
by coordinating state between the pipelines, e.g. using something like cache coherency protocols
commonly implemented within multi-core CPUs, or by “moving the packets to where the shared
state is”, e.g. recirculating packets to a common pipeline where the meter state is kept. Both of
these techniques lead to lower packet processing performance, at least in some cases, and both add
complexity to the system. It is typical in network switches to simply maintain the meter state
independently in each pipeline and not coordinate it, and accept the resulting behavior.

This issue is not specific to packet switches. It falls under the category of accessing mutable state
in a distributed system, with not only correctness concerns, but very strong performance concerns.

The Register extern is more general in its capability than meters, and the same potential issue
of state being split across multiple pipelines exists. It is recommended that you talk to your PSA
device vendor about this issue if it could affect features you wish to write in your P4 program. If
a PSA device does not implement automatic coherency for such state, common strategies are the
same as mentioned above for meters: accept the resulting behavior of the independently maintained
state in each pipeline, or move the relevant packets to one place where the state is maintained.

Note that the proposed psa_idle_timeout table property introduces a way by which doing table
apply operations does update state within a P4 table. Each table entry requires at least one, and
more likely several, bits of state to represent a “last matched time” value, and this value is updated
with every apply operation. If this state in tables with this option is not automatically coordinated
between pipelines, then it can differ for corresponding table entries in different pipelines. An entry
with key X in one pipeline could remain unmatched for longer than the desired timeout, at the same
time that the corresponding entries with key X are recently matched in other pipelines. One possible
approach to handle this is for the PSA device and its implementation-specific control software to
make the existence of multiple pipelines explicit to the control plane software in some way, e.g.
assign each pipeline, and the tables and externs it contains, a distinct name.

For programming multiple pipelines, it is the responsibility of the vendor and of target dependent
tools to specify how PSA programs are mapped to multiple pipelines. An implementation may use
a copy of the PSA program on each pipeline, thus keeping pipelines fully isolated.

F. Appendix: Packet ordering

This section describes recommendations for PSA implementations on the order that packets are
processed. These are not requirements, since there are known implementation techniques, especially
parallelism that can be taken advantage of in a variety of ways, that can lead to cheaper imple-
mentations if these recommendations are not followed. We recommend that developers selecting P4
devices ask their designers about these issues, if those developers consider the issues important for
their purposes.

Recommendation 1: Packets that arrive on the same input port should begin ingress processing
in the same relative order as they arrived.

Recommendation 2: Packets that go out on the same output port should be transmitted on the
port in the same relative order that they began egress processing.

Recommendation 3: PRE unicast packets (i.e. those that follow the “enqueue one packet” path
in the pseudocode of section 6.2) that arrived from the same ingress port, did ingress processing once
(i.e. were not resubmitted or recirculated), were sent to the PRE with the same class_of_service
value, and destined for the same egress port, should begin egress processing in the same relative
order as they began ingress processing.

It is expected that some PSA implementations will implement the class of service mechanism
by having a separate FIFO queue per class of service, and thus while unicast packets with the

2018-11-22 12:44 P46 Portable Switch Architecture 63

F. APPENDIX: PACKET ORDERING

same ingress port, egress port, and class of service will pass through the system in FIFO order if
they follow all recommendations above, unicast packets with the same ingress and egress port, but
different classes of service, may be processed by the egress control block in a different order than
they were processed by the ingress control block.

If an implementation satisfies recommendations 1 through 3, then unicast traffic assigned to the
same class of service will maintain its relative order through the device.

Recommendation 4: Consider PRE multicast packets (i.e. those that follow the “Make 0 or
more copies” path in the pseudocode of section 6.2) that arrived on the same ingress port, did
ingress processing once, and were sent to the PRE with the same pair of values (class_of_service,
multicast_group). For copies of those original packets that are destined to the same egress port,
and with the same pair of values for (egress_port, instance), those copies should begin egress
processing in the same relative order as the original packets began ingress processing.

There is no such expectation for multicast packets with different class_of_service values, again
because of separate queues in the PRE for different class_of_service values.

It is also understood that for a short period of time after the control plane modifies the set of
copies to be made for a particular multicast_group value, that it may be especially difficult to
satisfy Recommendation 4. That recommendation is intended to apply only when the set of copies
to be made for the multicast group has remained unchanged for a period of time.

If an implementation satisfies recommendations 1, 2, and 4, then multicast traffic assigned to
the same class of service will maintain its relative order through the device, when multicast group
membership has been stable for long enough.

Note that there is no recommendation to enforce any relative ingress to egress processing order
of unicast packets vs. multicast packets. Commonly used mechanisms for creating multicast copies
in the PRE allow unicast packets to “go around” the packet replication logic, which is unnecessary
for unicast packets, and thus change the relative order of such packets there. Also, it is common in
packet buffers to use separate queues for multicast traffic versus unicast.

We give some motivations for these recommendations below.

1. Expectations of hosts

While the Internet Protocol does not have strong ordering requirements for sequences of packets
sent by one host to another, there are still widely deployed implementations of TCP that lead
to significantly degraded throughput when the network frequently delivers packets to the receiver
in a different order than they were transmitted. While significant research and development has
been done to mitigate this issue, e.g. later Linux TCP implementations (since 2011 when version
2.6.35 was released) are much more resilient to this problem than earlier versions, there are still
many commonly deployed TCP implementations that suffer from this issue. See references within
Kandula et al’s work!® for some of the research done towards making TCP more robust in the face
of network packet reordering.

Such TCP implementations interpret acknowledgements with repeated cumulative acknowledge-
ment sequence numbers as a likely indication of packet loss in the network, and reduce their sending
window in an effort to avoid network congestion.

While applications using UDP should also be aware of possible packet reordering in a network,
some of them behave poorly if this reordering becomes common!.

These expectations of hosts are a significant reason why ECMP (Equal Cost Multi Path) path
selection and LAG (Link Aggregation Group) link selection are so often done by using a hash
of packet header fields such as IP source and destination address, and TCP or UDP source and
destination port. Choosing among parallel paths in this way helps to preserve the order of packets
in the same application flow, at the cost of not balancing the load as evenly as possible. If a network

155, Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balancing without packet reordering”, ACM
SIGCOMM Computer Communication Review, Vol. 37, No. 2, April 2007

16M. Laor and L. Gendel, “The effect of packet reordering in a backbone link on application throghput”, IEEE
Network, 2002.

2018-11-22 12:44 P46 Portable Switch Architecture 64

G. APPENDIX: SUPPORTING EMPTY ACTION SELECTOR GROUPS

device’s internal implementation reordered packets, it would be an independent source of network
reordering.

2. Implementation of stateful protocols

This reason is much less significant than the previous one. We mention it here primarily so imple-
menters of networking protocols are aware of the issue. This issue is only relevant for a relatively
small fraction of network protocols.

Some networking protocols add sequence numbers to packets, and require either dropping packets
that arrive out of sequence number order at a later network point (e.g. GRE with sequence numbers
enabled), or with a looser check that allows some amount of network reordering to occur without
dropping the packets (e.g. IPsec). When a device implementing these protocols does the sequence
number insertion or checking in a different order than packets are sent or received on a physical
port, that is effectively another kind of network reordering that can affect the performance of these
protocols.

Similarly, there are some protocols like IP header compression, where multiple variants have been
developed, some with more or less robustness in the face of network reordering.

G. Appendix: Supporting empty action selector groups

As mentioned in Section 7.12, a PSA data plane implementation need not implement any specific
defined behavior if one attempts to add a table entry for a key that points at a group that is currently
empty.

Some P4 users have expressed an interest in enabling a P4Runtime client (hereafter called the
controller) to remove the last member of an action selector group, and have the data plane behave
in a predictable way.

For example, if one has a table that maps logical interface id numbers to physical port numbers,
using an action selector to implement LAG (Link Aggregation Group), what should the controller
do when there was only one physical port in a LAG that was enabled, and that port goes down? A
straightforward desired behavior from the controller’s perspective is: issue the PARuntime command
to remove the last member from the group, and have an empty group action of “drop the packet”
take effect for any packets applying the table and selecting the empty group.

Fully supporting empty action groups should meet all of these requirements:

e All P4Runtime API operations such as adding a member to a group (even when changing from
empty to 1 member), removing a member from a group (even when changing from 1 member
to empty), modifying the action associated with a member, etc. should be atomic relative to
data packet processing. That is, every packet should be processed as if the table was in the
old state, or the new state, with no undefined packet processing behavior.

e The empty group action that is executed when the matching table entry points at an empty
group, may have an action name that is the same as, or different than, the action name used by
the group when it was non-empty (if it was non-empty, and then became empty by removing
its last member).

A high performance implementation will also be able to make changes to group membership using
a number of data plane update operations that does not grow with the number of table entries that
point at the group.

Achieving all of these requirements seems not to be possible with a PSA data plane implementa-
tion that meets only the minimum requirements for action selectors, i.e. one that restricts members
of a group to all have the same action name, and that does not natively support predictable behavior
if a group is empty in the data plane.

Below we describe one way that achieves the goals above, but only for a data plane implementa-
tion that supports multiple different action names in the same group at the same time. For a data
plane that does not support this, the idea only nearly achieves the goal. It requires the empty group

2018-11-22 12:44 P46 Portable Switch Architecture 65

G. APPENDIX: SUPPORTING EMPTY ACTION SELECTOR GROUPS

action to have the same action name as the non-empty groups of the action selector. This may be
too onerous of a restriction on system developers to be worth implementing.

This behavior can be implemented via a small extra bit of logic in the P4ARuntime server imple-
mentation (hereafter called the agent). The basic idea is that the agent obtains the empty group
action, with action parameter values, e.g. from the compiled representation of the P4 program.

If no table entry currently “points at” an empty group G, then G’s empty group action need not
be installed anywhere in the data plane. Similarly if G is currently non-empty, and there are table
entries currently pointing at G.

Suppose there is currently one member in G, and G is pointed at by at least one table entry.
The controller issues a command to remove that only member from G.

The agent can implement this command by the following sequence of changes in the data plane:

1. Add to G a new member, which is the empty group action. Now in the data plane, for a short
time, G contains two members.

2. Remove from G the member that the controller requested to be removed. Now the data plane
version of G has only one member containing the empty group action, so all packets using G
will execute that action.

When G is currently empty as far as the controller is concerned (but contains one member pointing
at the empty group action in the data plane), and the controller adds one member to it, the agent
can implement this via these steps:

1. Add to G the member requested by the controller. The data plane temporarily has two
members for G, including the empty group action.

2. Remove from G the empty group action. Now G in the data plane is back to the one member
that the controller wants.

A PSA implementation with an agent that implements empty action selector groups in this way
must implement each of the two steps for such transitions in an atomic way, as described in Section
8, but it is allowed for one or more packets to be processed in the intermediate state that exists
between the two steps.

If a PSA implementation supports multiple different action names in the same group at the same
time, then there is no need to read further. Below we only describe what might be done for a data
plane that restricts each group to contain only actions with the same action name.

Because a PSA implementation need not support multiple different action types in the same
action selector group at the same time (mentioned in Section 7.12), a developer wishing to take
advantage of this in a portable way may need to modify one or more of the actions used in their
tables that use action selectors.

For example, if in the LAG port selection example mentioned earlier, there was only one action
for a table lag defined like this:

action set_output_port (PortId_t p) {
user_meta.out_port = p;

}
ActionProfile(128) ap;
table lag {
key = {
// ... key fields go here ...
¥
actions = { set_output_port; }
psa_implementation = ap;
}

control cIngress (
inout headers hdr,

2018-11-22 12:44 P46 Portable Switch Architecture 66

G. APPENDIX: SUPPORTING EMPTY ACTION SELECTOR GROUPS

inout metadata user_meta,

in psa_ingress_input_metadata_t istd_meta,
inout psa_ingress_output_metadata_t ostd_meta
) {
apply {
// ... earlier ingress code goes here ...
lag.apply();
send_to_port(ostd_meta, user_meta.out_port);
// ... later ingress code goes here ...
}
}

with a single action parameter equal to a physical port number of the device, one of the following
approaches could be used, and of course there are likely to be other approaches not mentioned here.

e Approach 1: Use an invalid port number

Pick a value of type PortId_t that corresponds to no valid physical port of the device (TBD whether
PSA should define such a value with a name — it currently doesn’t guarantee that such a value even
exists for type PortId_t) and use that value for the empty group action of an empty group. In the
code after lag.apply, add an if statement checking for that invalid value, like this:

apply {

// ... earlier ingress code goes here ...

lag.apply();

if (user_meta.out_port == PORT_INVALID_VALUE) {
ingress_drop(ostd_meta) ;

} else {
send_to_port (ostd_meta, user_meta.out_port);

¥

// ... later ingress code goes here ...

}
e Approach 2: Add extra parameters to the action

In this case, add a 1-bit parameter indicating whether to drop the packet later. An if statement is
still needed after applying the table.

action set_output_port (PortId_t p, bit<1> drop) {
user_meta.out_port = p;
user_meta.drop = drop;

}
/]
apply {
// ... earlier ingress code goes here ...
lag.apply();
if (user_meta.drop == 1) {
ingress_drop(ostd_meta) ;
} else {
send_to_port (ostd_meta, user_meta.out_port);
}
// ... later ingress code goes here ...
}

2018-11-22 12:44 P46 Portable Switch Architecture 67

G. APPENDIX: SUPPORTING EMPTY ACTION SELECTOR GROUPS

In either case, an implementation might also support putting the if statement inside of the action
set_output_port, but this is not required by PSA.

2018-11-22 12:44 P46 Portable Switch Architecture 68

	1. Target Architecture Model
	2. Naming conventions
	3. Packet paths
	4. PSA Data types
	4.1. PSA type definitions
	4.2. PSA supported metadata types
	4.3. Match kinds
	4.4. Data plane vs. control plane data representations

	5. Programmable blocks
	6. Packet Path Details
	6.1. Initial values of packets processed by ingress
	6.1.1. Initial packet contents for packets from ports
	6.1.2. Initial packet contents for resubmitted packets
	6.1.3. Initial packet contents for recirculated packets
	6.1.4. User-defined metadata for all ingress packets

	6.2. Behavior of packets after ingress processing is complete
	6.2.1. Multicast replication

	6.3. Actions for directing packets during ingress
	6.3.1. Unicast operation
	6.3.2. Multicast operation
	6.3.3. Drop operation

	6.4. Initial values of packets processed by egress
	6.4.1. Initial packet contents for normal packets
	6.4.2. Initial packet contents for packets cloned from ingress to egress
	6.4.3. Initial packet contents for packets cloned from egress to egress
	6.4.4. User-defined metadata for all egress packets
	6.4.5. Multicast and clone copies

	6.5. Behavior of packets after egress processing is complete
	6.6. Actions for directing packets during egress
	6.6.1. Drop operation

	6.7. Contents of packets sent out to ports
	6.8. Packet Cloning
	6.8.1. Clone Examples

	6.9. Packet Resubmission
	6.10. Packet Recirculation

	7. PSA Externs
	7.1. Restrictions on where externs may be used
	7.2. PSA Table Properties
	7.2.1. Table entry timeout notification

	7.3. Packet Replication Engine
	7.4. Buffering Queuing Engine
	7.5. Hashes
	7.5.1. Hash function

	7.6. Checksums
	7.6.1. Basic checksum
	7.6.2. Incremental checksum
	7.6.3. InternetChecksum examples

	7.7. Counters
	7.7.1. Counter types
	7.7.2. Counter
	7.7.3. Direct Counter
	7.7.4. Example program using counters

	7.8. Meters
	7.8.1. Meter types
	7.8.2. Meter colors
	7.8.3. Meter
	7.8.4. Direct Meter

	7.9. Registers
	7.10. Random
	7.11. Action Profile
	7.11.1. Action Profile Example

	7.12. Action Selector
	7.12.1. Action Selector Example

	7.13. Timestamps
	7.14. Packet Digest

	8. Atomicity of control plane API operations
	A. Appendix: Open Issues
	A.1. Action Selectors
	A.2. Observation and control of congestion
	A.3. Enabling full implementation of In-band Network Telemetry
	A.4. PSA profiles

	B. Appendix: Implementation of the InternetChecksum extern
	C. Appendix: Example implementation of Counter extern
	D. Appendix: Rationale for design
	D.1. Why egress processing?
	D.2. No output port change during egress
	D.3. Ingress deparser and egress parser

	E. Appendix: Multi-pipeline PSA devices
	F. Appendix: Packet ordering
	G. Appendix: Supporting empty action selector groups

