
The P4 Language Specification
Version 1.0.5

November 26, 2018

The P4 Language Consortium

1 Introduction

P4 is a declarative language for expressing how packets are processed by the pipeline
of a network forwarding element such as a switch, NIC, router or network function ap-
pliance. It is based upon an abstract forwarding model consisting of a parser and a set
of match+action table resources, divided between ingress and egress. The parser iden-
tifies the headers present in each incoming packet. Each match+action table performs
a lookup on a subset of header fields and applies the actions corresponding to the first
match within each table. Figure 1 shows this model.

P4 itself is protocol independent but allows for the expression of forwarding plane pro-
tocols. A P4 program specifies the following for each forwarding element.

• Header definitions: the format (the set of fields and their sizes) of each header
within a packet.

• Parse graph: the permitted header sequences within packets.

• Table definitions: the type of lookup to perform, the input fields to use, the actions
that may be applied, and the dimensions of each table.

• Action definitions: compound actions composed from a set of primitive actions.

• Pipeline layout and control flow: the layout of tables within the pipeline and the
packet flow through the pipeline.

P4 addresses the configuration of a forwarding element. Once configured, tables may
be populated and packet processing takes place. These post-configuration operations
are referred to as "run time" in this document. This does not preclude updating a for-
warding element’s configuration while it is running.

1.1 The P4 Abstract Model

The following diagram shows a high level representation of the P4 abstract model.

The P4 machine operates with only a few simple rules.

© 2014–2017, The P4 Language Consortium

1.1 The P4 Abstract Model 1 INTRODUCTION

Figure 1: Abstract Forwarding Model

• For each packet, the parser produces a Parsed Representation on which match+

action tables operate.

• The match+action tables in the Ingress Pipeline generate an Egress Specification
which determines the set of ports (and number of packet instances for each port)
to which the packet will be sent.

• The Queuing Mechanism processes this Egress Specification, generates the nec-
essary instances of the packet and submits each to the Egress Pipeline. Egress
queuing may buffer packets when there is over-subscription for an output port,
although this is not mandated by P4.

• A packet instance’s physical destination is determined before entering the Egress
Pipeline. Once it is in the Egress Pipeline, this destination is assumed not to
change (though the packet may be dropped or its headers further modified).

• After all processing by the Egress Pipeline is complete, the packet instance’s header
is formed from the Parsed Representation (as modified by match+action process-
ing) and the resulting packet is transmitted.

Although not shown in this diagram, P4 supports recirculation and cloning of packets.
This is described in detail in Section 14.

2

1.2 The mTag Example 1 INTRODUCTION

P4 focuses on the specification of the parser, match+action tables and the control flow
through the pipelines. Programmers control this by writing a P4 program which speci-
fies the switch configuration as shown at the top of Figure 1.

A machine that can run a P4 program is called target. Although a target may directly
execute a P4 program, it is assumed in this document that the program is compiled
into a suitable configuration for the target.

In the current version, P4 does not expose, for example, the functionality of the Queu-
ing Mechanism and does not specify the semantics of the Egress Specification beyond
what is mentioned above. Currently they are defined in target specific input to the
compiler and exposed in conjunction with other interfaces that provide run time sys-
tem management and configuration. Future versions of P4 may expose configuration
of these mechanisms allowing consistent management of such resources from the P4
program.

1.2 The mTag Example

The original P4 paper [1] includes an example called mTag. We use this example through-
out this specification as a means of explaining the basic language features as they are
presented. Complete source for this example, including sample run-time APIs, is avail-
able at the P4 web site [2].

We give an overview of the mTag example here. Quoting from the original paper:

Consider an example L2 network deployment with top-of-rack (ToR) switches
at the edge connected by a two-tier core. We will assume the number of
end-hosts is growing and the core L2 tables are overflowing. . . . P4 lets us
express a custom solution with minimal changes to the network architec-
ture. . . . The routes through the core are encoded by a 32-bit tag composed
of four single-byte fields. The 32-bit tag can carry a "source route".... Each
core switch need only examine one byte of the tag and switch on that infor-
mation. [1]

Two P4 programs are defined for this example: One for edge switches (called "ToR"
above) and one for aggregation switches (called "core switches" above). These two pro-
grams share definitions for packet headers, the parser and actions.

1.3 P4 Abstractions

P4 provides the following abstractions. A P4 program consists of instances of each.

• Header type: A specification of fields within a header.

• Header instance: A specific instance of a packet header or metadata.

3

1.4 Structure of the P4 Language 1 INTRODUCTION

• Parser state function: Defines how headers are identified within a packet.

• Action function: A composition of primitive actions that are to be applied to-
gether.

• Table instance: Specified by the fields to match and the permitted actions.

• Control flow function: Imperative description of the table application order.

• Stateful memories: Counters, meters and registers which persist across packets.

In addition to these high level abstractions, the following are used

• For a header instance:

– Metadata: Per-packet state which may not be derived from packet data.
Otherwise treated the same as a packet header.

– Header stack: a contiguous array of header instances.

– Dependent fields: Fields whose values depend on a calculation applied to
other fields or constants.

• For a parser:

– Value set: run-time updatable values used to determine parse state transi-
tions.

– Checksum calculations: The ability to apply a function to a set of bytes from
the packet and test that a field matches the calculation.

1.4 Structure of the P4 Language

This section (work in progress) provides a brief overview of the structure of the P4 lan-
guage.

The P4 language uses a flat typing structure, inferring types for most function param-
eters. In general each P4 level declaration has its own namespace, though potential
ambiguities are identified in the spec.

Constant values can be expressed in P4 in binary, decimal and hexadecimal. Base spec-
ifications 0x and 0b are used to indicate binary and hexadecimal respectively.

It is sometimes necessary to indicate the number of bits that should be used to repre-
sent the value. P4 allows this by means of a width indication preceding the base speci-
fication. See Section 1.5.1 below.

P4 allows value expressions with operators so long as they can be evaluated at compile
time.

4

1.5 Specification Conventions 1 INTRODUCTION

1.5 Specification Conventions

This document represents P4 grammatical constructs using BNF with the following
conventions:

• The BNF is presented in green boxes.

• Terminal nodes are indicated with bold.

• A node with a name ending in _name is implicitly a string whose first character is
a letter (not a digit).

• Nodes followed by + indicate one or more instances.

• Nodes followed by * indicate zero or more instances.

• A vertical bar, |, separates options from which exactly one must be selected.

• Square brackets, [], are used to group nodes. A group is optional unless it is fol-
lowed by +. A group may be followed by * indicating zero or more instances of the
group.

• Symbols with special significance (e.g., [] * + |) may be used as terminal nodes
by enclosing them in quotes: for example "*".

• Symbols other than those listed above are literals. Examples include curly braces,
colon, semi-colon, parentheses, and comma.

• If a rule does not fit on one line, a new line immediately follows ::= and the de-
scription ends with a blank line.

• Examples code appears in blue boxes to differentiate them more clearly from BNF
rules.

• To emphasize those locations where a field width is indicated (the width of the
value’s representation may matter), the node field_value is used. This is a syn-
onym for any other constant value, const_value.

Header types and table definitions are specified declaratively. These typically consist of
a set of attribute/value pairs separated by a colon.

Parsers, actions and control flow are specified imperatively with untyped parameters (if
any) and a limited set of operations.

1.5.1 Value Specifications

As noted above in Section 1.4, P4 supports generic and bit-width specific values. These
are unified through the following representation.

5

1.5 Specification Conventions 1 INTRODUCTION

const_value ::= ["+" | -] [width_spec] unsigned_value

unsigned_value ::= binary_value | decimal_value | hexadecimal_value

binary_value ::= binary_base binary_digit+

decimal_value ::= decimal_digit+

hexadecimal_value ::= hexadecimal_base hexadecimal_digit+

binary_base ::= 0b | 0B
hexadecimal_base ::= 0x | 0X

binary_digit ::= _ | 0 | 1
decimal_digit ::= binary_digit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
hexadecimal_digit ::=

decimal_digit | a | A | b | B | c | C | d | D | e | E | f | F

width_spec ::= decimal_digit+ ’
field_value ::= const_value

The width specification is followed by an apostrophe (not a back-tick). The width must
be specified in decimal.

Note that constants always start with a digit to distinguish them from other identi-
fiers.

The node const_value may be read as "constant value". The node field_value is used
in this specification to emphasize that the width of the representation may be relevant;
otherwise it is a synonym for const_value.

Whitespace terminates a constant specification.

Underscores are permitted in values to add clarity by grouping digits; they are ignored
otherwise. Examples include: 78_256_803 (replacing commas in decimal representa-
tion) or 0b1101_1110_0101 (grouping bits into nibbles or bytes in binary representa-
tion).

Optionally, the bit-width of the value may be specified as indicated by bit_width. Zero
is permitted as a width which is the same as not specifying a width. If no width pre-
cedes the value, then the width is inferred. For positive values the inferred width is the
smallest number of bits required to contain the value. For negative values the inferred
width is one more than the smallest number of bits required to contain the positive
value.

Negative numbers are represented in two’s complement. See Appendix 17.5. Field Value
Conversions regarding conversions and sign extension of field values.

6

2 HEADERS AND FIELDS

Here are some example values.

Notation Decimal Value Bit Width Notes
42 42 6 Default base is decimal
16’42 42 16 The same value, but explicitly given a width

of 16 bits.
0b101010 42 6 Binary representation of same with implicit

width
0’0x2a 42 6 A zero width is the same as not specifying

a width meaning the width is inferred from
the value.

12’0x100 256 12 Example of bit width and hexadecimal base
indication.

7’0b1 1 7 Binary value specified with explicit width
-0B101 -5 4 The negative is not applied until the rest of

the value is evaluated.

Table 1: Value Representation Examples

Expressions, including the use of parentheses, are supported for both arithmetic and
field values with the expectation that they are evaluated by the compiler. The following
binary integer operators are allowed with their syntax, semantics,

precedence and associativity matching that of C:
+ - * / % « » | & ˆ ∼

2 Headers and Fields

2.1 Header Type Declarations

Header types describe the layout of fields and provide names for referencing informa-
tion. Header types are used to declare header and metadata instances. These are dis-
cussed in the next section.

Header types are specified declaratively according to the following BNF:

header_type_declaration ::=

header_type header_type_name { header_dec_body }

header_dec_body ::=

fields { field_dec + }

7

2.1 Header Type Declarations 2 HEADERS AND FIELDS

[length : length_exp ;]

[max_length : const_value ;]

field_dec ::= field_name : bit_width [(field_mod)];

field_mod ::= signed | saturating | field_mod , field_mod

length_bin_op ::= "+" | - | "*" | "<<" | ">>"
length_exp ::=

const_value |

field_name |

length_exp length_bin_op length_exp |

(length_exp)

bit_width ::= const_value | "*"

Header types are defined with the following conventions.

• Header types must have a fields attribute.

– The list of individual fields is ordered.

– Fields are, by default, unsigned and non-saturating (i.e., addition/subtrac-
tion causing overflow/underflow will wrap).

– The bit offset of a field from the start of the header is determined by the sum
of the widths of the fields preceding it in the list.

– Bytes are ordered sequentially (from the packet ordering).

– Bits are ordered within bytes by most-significant-bit first. Thus, if the first
field listed in a header has a bit width of 1, it is the high order bit of the first
byte in that header.

– All bits in the header must be allocated to some field.

– One field at most within a header type may specify a width of "*" which
indicates it is of variable length.

• If all fields are fixed width (no fields of width "*") then the header is said to be of
fixed length. Otherwise it is of variable length.

• The length attribute specifies an expression whose evaluation gives the length of
the header in bytes for variable length headers.

– It must be present if the header has variable length (some field has width
"*").

– A compiler warning must be generated if it is present for a fixed length header.

8

2.1 Header Type Declarations 2 HEADERS AND FIELDS

– Fields referenced in the length attribute must be located before the variable
length field.

• The max_length attribute indicates the maximum allowed length of the header in
bytes for a variable length header.

– If, at run time, the calculated length exceeds this value, it is considered a
parser exception. See Section 4.6.

– The max_length attribute may be present if the header is variable length.

– A compiler warning must be generated if it is present for a fixed length header.

• Operator precedence and associativity follows C programming conventions.

P4 supports variable-length headers for packet headers via the use of fields with the
special bit width "*". The width of such a field is inferred from the total header length
(which is in bytes) as indicated by the length attribute. The width of the field in bits is
((8 * length) - sum-of-fixed-width-fields). Only one field at most within a header
may specify a width of "*".

An example declaration for a VLAN header (802.1Q) is:

header_type vlan_t {

fields {

pcp : 3;

cfi : 1;

vid : 12;

ethertype : 16;

}

}

Metadata header types are declared with the same syntax.

header_type local_metadata_t {

fields {

cpu_code : 16; // Code for packet going to CPU

port_type : 4; // Type of port: up, down, local...

ingress_error : 1; // An error in ingress port check

was_mtagged : 1; // Track if pkt was mtagged on ingr

copy_to_cpu : 1; // Special code resulting in copy to CPU

bad_packet : 1; // Other error indication

}

}

9

2.2 Header and Metadata Instances 2 HEADERS AND FIELDS

2.2 Header and Metadata Instances

While a header type declaration defines a header type, a packet may contain multiple
instances of a given type. P4 requires each header instance to be declared explicitly
prior to being referenced.

There are two sorts of header instances: packet headers and metadata. Usually, packet
headers are identified from the packet as it arrives at ingress while metadata holds in-
formation about the packet that is not normally represented by the packet data such as
ingress port or a time stamp.

Most metadata is simply per-packet state used like registers while processing a packet.
However, some metadata may have special significance to the operation of the switch.
For example, the queuing system may interpret the value of a particular metadata field
when choosing a queue for a packet. P4 acknowledges these target specific semantics,
but does not attempt to represent them.

Packet headers (declared with the header keyword) and metadata (declared with the
metadata keyword) differ only in their validity. Packet headers maintain a separate valid
indication which may be tested explicitly. Metadata is always considered to be valid.
This is further explained in Section 2.2.1. Metadata instances are initialized to 0 by
default.

The BNF for header and metadata instances is:

instance_declaration ::= header_instance | metadata_instance

header_instance ::= scalar_instance | array_instance

scalar_instance ::= header header_type_name instance_name ;

array_instance ::=

header header_type_name

instance_name "[" const_value "]" ;

metadata_instance ::=

metadata header_type_name

instance_name [metadata_initializer] | ;

metadata_initializer ::= { [field_name : field_value ;] + }

Some notes:

• Only packet headers (not metadata instances) may be arrays (header stacks).

• header_type_name must be the name of a declared header type.

• Metadata instances may not be declared with variable length header types.

10

2.2 Header and Metadata Instances 2 HEADERS AND FIELDS

• The fields named in the initializer must be from the header type’s fields list.

• If an initializer is present, the named fields are initialized to the indicated values;
unspecified values are initialized to 0.

• For header instances, the compiler must produce an error if the total length of all
fields in a header type is not an integral number of bytes. The compiler may pad
the header to be byte aligned.

For example:

header vlan_t inner_vlan_tag;

This indicates that space should be allocated in the Parsed Representation of the packet
for a vlan_theader. It may be referenced during parsing and match+action by the name
inner_vlan_tag.

A metadata example is:

metadata local_metadata_t local_metadata;

This indicates that an local_metadata_t type object called local_metadata should be
allocated for reference during match+action.

2.2.1 Testing if Header and Metadata Instances are Valid

Packet headers and their fields may be checked for being valid (that is, having a defined
value). Validity and deparsing (see Section 5) are the only points where packet headers
and metadata headers differ.

A header instance, declared with the keyword header, is valid if it is extracted during
parsing (see 5. Parser Specification, below) or if an action makes it valid (add or copy).
A field (inside a header instance) is valid if its parent header instance is valid.

All fields in a metadata instance are always valid. Testing a metadata field for validity
should raise a compiler warning and will always evaluate to True.

Explanation: The reason for this is best seen by examining the case
of a "flag"; for example, suppose a one bit metadata flag is used to
indicate that a packet has some attribute (say, is an IP packet, v4 or
v6). There is no practical difference between the flag having a value
of 0 and the flag itself being invalid. Similarly, many "index" meta-
data fields can be given a reserved value to indicate they are invalid
(hence support for initial values of metadata fields). While occasion-
ally it would be useful to have an independent valid bit for a metadata

11

2.3 Header and Field References 2 HEADERS AND FIELDS

field, defining a separate metadata flag to represent that field’s validity
is a reasonable work around.

When an invalid packet header is used as a part of the match key for a table, the value
of the header is undefined. A match operation may explicitly check if a header in-
stance (or field) is valid. Only valid packet headers are considered for deparsing (see
Section 5).

2.2.2 Header Stacks

P4 supports the notion of a header stack which is a sequence of adjacent headers of
the same type. MPLS and VLAN tags are examples that might be treated this way.
Header stacks are declared as arrays as shown in the array_instance clause in Sec-
tion 2.2.

Header stack instances are referenced using bracket notation and such references are
equivalent to a non-stack instance reference. The parser maintains information to
manage the header stack.

2.3 Header and Field References

For match, action and control flow specifications, we need to make references to header
instances and their fields. Headers are referenced via their instance names. For header
stacks, an index is specified in square brackets.

header_ref ::= instance_name | instance_name "[" index "]"
index ::= const_value | last

To refer to a particular header field, we use dotted notation.

field_ref ::= header_ref . field_name

For example inner_vlan_tag.vid where inner_vlan_tag has been declared as an in-
stance of header type vlan_tag.

• Field names must be listed in the fields attribute of the header declaration.

• A field reference is always relative to its parent header. This allows the same field
name to be used in different header types without ambiguity.

• Each header instance may be valid or invalid at any given time. This state may be
tested in match+action processing.

12

2.4 Field Lists 2 HEADERS AND FIELDS

• References at run time to a header instance (or one of its fields) which is not valid
results in a special “undefined” value. The implications of this depend on the
context.

To help programers write parsers for header stacks, P4 provides two keywords, next and
last, that may be used to refer to header instances within a stack. These references are
advanced automatically as the parser invokes extract in the parser.

More precisely, if stk is a header stack, then stk[next] initially refers to the header in-
stance in stk at index 0 and automatically advances each time extract(stk[next]) is
invoked. If extract(stk[next]) is invoked more than N times, where N is the size of
the stack, then evaluating stk[next] results in a p4_pe_index_out_of_bounds excep-
tion. The last keyword refers to the instance referred to by next prior to the last in-
vocation of extract, if it exists, and otherwise results in p4_pe_index_out_of_bounds

exception. It is illegal to use next and last outside of a parser.

Note that while it is legal to extract to a constant index within a stack and to the element
referred by next, it is not recommended to mix these modes of operation, because it is
likely to be confusing for programmers.

2.4 Field Lists

In many cases, it is convenient to specify a sequence of fields. For example, a hash func-
tion may take a sequence of fields as input or a checksum may be calculated based on
a sequence of fields. P4 allows such declarations. Each entry may be a specific field in-
stance reference, a header instance (which is equivalent to listing all the header’s fields
in order) or a fixed value. Packet headers and metadata may be referenced in a field
list.

field_list_declaration ::=

field_list field_list_name {

[field_list_entry ;] +

}

field_list_entry ::=

field_ref | header_ref | field_value | field_list_name | payload

A field list may reference other field lists. As a result, field lists names and header in-
stance names should be considered part of the same namespace. Recursive references
are not supported.

The identifier payload indicates that the contents of the packet following the header
of the previously mentioned field is included in the field list. This is to support spe-
cial cases like the calculation of an Ethernet CRC across the entire packet or the TCP

13

3 CHECKSUMS AND HASH-VALUE GENERATORS

checksum.

3 Checksums and Hash-value generators

Checksums and hash value generators are examples of functions that operate on a
stream of bytes from a packet to produce an integer. These have many applications in
networking. The integer may be used, for example, as an integrity check for a packet or
as a means to generate a pseudo-random value in a given range on a packet-by-packet
or flow-by-flow basis.

P4 provides a means of associating a function with a set of fields and allowing the re-
sulting operation (a map from packets to integers) to be referenced in P4 programs.
These are called field list calculations or calculation objects. P4 does not support the
expression of the algorithm for computing the underlying function, treating these like
primitive actions. A set of known algorithms are identified for convenience.

The resulting functions – a field list calculation maps a packet to an integer – may be
configurable through run time APIs. Targets may vary in their support of these inter-
faces, but typically the seed value of the calculation may be configured, the algorithm
may have configurable parameters (such as the coefficients for a polynomial used in
the calculation) and possibly even the set of fields used may be configured.

The field list may be referenced as a field property for checksums, discussed in Sec-
tion 3.1, or referenced in a primitive action.

field_list_calculation_declaration ::=

field_list_calculation field_list_calculation_name {

input {

[field_list_name ;] +

}

algorithm : stream_function_algorithm_name ;

output_width : const_value ;

}

Run time APIs allow the selection of one of the input field lists to be active at a time.
The first listed name is used as the default.

The output_width value is in bits.

A field instance is excluded from the calculation (i.e., it is treated as if the instance is not
listed in the input list) if the field’s header is not valid.

The algorithm is specified as a string. The following algorithms are defined with the
given names, and targets may support others.

14

3.1 Checksums 3 CHECKSUMS AND HASH-VALUE GENERATORS

• xor16: Simply the XOR of bytes taken two at a time.

• csum16: See the IPv4 header checksum description in
https://tools.ietf.org/html/rfc791#page-14.

• crc16: See http://en.wikipedia.org/wiki/Crc16.

• crc32: See http://en.wikipedia.org/wiki/Crc32

• programmable_crc: This algorithm allows the specification of an arbitrary CRC
polynomial. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check.

3.1 Checksums

Some fields, such as the IP checksum, hold the result of a stream calculation. P4 allows
the representation of these dependencies with the calculated field declaration. Calcu-
lated fields matter to the extent they are verified at packet ingress or are updated at
packet egress.

The syntax associates a sequence of update or verify directives to a specific field in-
stance, each of which may have a condition associated with it. The first entry with a
condition satisfied by the packet (or with no condition specified) determines the as-
sociation. This complexity allows the selection of different calculations based on the
packet’s format. For example, the calculation of a TCP checksum may vary slightly
based on whether the packet has an IPv4 or an IPv6 header.

Note that the conditions are evaluated at the point the verify or update operations are
carried out.

Currently only limited conditions are supported.

calculated_field_declaration ::=

calculated_field field_ref { update_verify_spec + }

update_verify_spec ::=

update_or_verify field_list_calculation_name [if_cond] ;

update_or_verify ::= update | verify
if_cond ::= if (calc_bool_cond)

calc_bool_cond ::=

valid (header_ref | field_ref) |

field_ref == field_value

Here is an example declaration. It assumes field_list_calculation declarations for
tcpv4_calc and tcpv6_calc have been given and that ipv4 and ipv6 are packet header
instances.

15

https://tools.ietf.org/html/rfc791#page-14
http://en.wikipedia.org/wiki/Crc16
http://en.wikipedia.org/wiki/Crc32
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

4 PARSER SPECIFICATION

calculated_field tcp.chksum {

update tcpv4_calc if (valid(ipv4));

update tcpv6_calc if (valid(ipv6));

verify tcpv4_calc if (valid(ipv4));

verify tcpv6_calc if (valid(ipv6));

}

For checksums, the field list calculation is intended to bind the field list and algorithm
to a specific field instance. This declaration indicates that the value stored in field_ref

is expected to be the value calculated by the given field set calculation on the packet.
Note that although this declaration may occur anywhere in the P4 program, the decla-
ration should be placed immediately after the header instance declaration for the field
referenced.

Fields that are variable length (width is "*") are not allowed to be declared as calculated
fields.

The verify option indicates that the parser should calculate the expected value and
check if that value is stored in the indicated field. If the value is not equal, then a p4_-

pe_checksum exception is generated; see 6.6.1. Standard Parser Exceptions. This check
occurs at the end of parsing and is performed only if field_ref is valid.

The update option indicates that the system should update the value of the field if
changes are made to any fields on which it depends. The update to the field occurs
when the packet is deparsed for egress. If no update clause applies, the field retains its
value from the match+action pipeline.

4 Parser Specification

P4 models the parser as a state machine. This can be represented as a parse graph
with each state a node and the state transitions as edges. Figure 2 shows a very simple
example. Note that this figure identifies a header with each state. While P4 supports
this approach, it does not require it. A node in the parse graph may be purely a decision
node and not bound to a particular header instance, or a node may process multiple
headers at once.

Here are a few of the P4 parser functions for the mTag parser. The start function calls
ethernet directly.

parser ethernet {

extract(ethernet); // Start with the ethernet header

return select(latest.ethertype) {

16

4 PARSER SPECIFICATION

Figure 2: Simple Parse Graph and mTag Parse Graph

0x8100: vlan;

0x800: ipv4;

default: ingress;

}

}

parser vlan {

extract(vlan);

return select(latest.ethertype) {

0xaaaa: mtag;

0x800: ipv4;

default: ingress;

}

}

parser mtag {

extract(mtag);

return select(latest.ethertype) {

0x800: ipv4;

default: ingress;

}

}

17

4.1 Parsed Representation 4 PARSER SPECIFICATION

The reference to ingress terminates parsing and invokes the ingress control flow func-
tion.

4.1 Parsed Representation

The parser produces the representation of the packet on which match+action stages
operate. This is called the Parsed Representation of the packet. It is the set of header
instances which are valid for the packet. The parser produces the initial Parsed Repre-
sentation as described below. Match+action may update the Parsed Representation of
the packet by modifying field values and by changing which header instances are valid;
the latter results in adding and removing headers.

The Parsed Representation holds packet headers as they are updated by match+action.
The original packet data may be maintained for special operations such as cloning, de-
scribed in Section 14.

Metadata is considered part of the Parsed Representation for the packet as it is generally
treated like other packet headers.

4.2 Parser Operation

The parser is fed the packet from the first byte. It maintains a current offset into the
packet which is a pointer to a specific byte in the header. It extracts headers from the
packet at the current offset into per-packet header instances and marks those instances
valid, updating the Parsed Representation of the packet. The parser then moves the cur-
rent offset forward (indicating the next valid byte of the packet to process) and makes a
state transition.

The P4 program may examine metadata in making state transition decisions, though
targets may have limitations on this ability. For example, the ingress port may be used
to determine an initial parser state allowing of different packet formats. Similarly, the
metadata provided by cloning or recirculation can be used to change the parsing be-
havior for such packets; see Section 14.

In P4, each state is represented as a parser function. A parser function may exit in one
of four ways:

• A return statement specifying the name of a parser function is executed. This
parser function is the next state to which the machine must transition.

• A return statement specifying the name of a control function (as described in Sec-
tion 12) is executed. This terminates parsing and begins match-action processing
by calling the indicated control function.

18

4.3 Value Sets 4 PARSER SPECIFICATION

• An explicit parse_error statement executes. See Section 4.6 for more informa-
tion.

• An implicit parser error occurs. These are described in Section 4.6.1.

Note that because of the first two points, parser function names and control function
names share a common namespace. The compiler must raise an error if two such func-
tions have the same name.

A select operation is defined to allow branching to different states depending on ex-
pressions involving fields or packet data.

If headers are to be extracted when entering a state, these are signaled explicitly by calls
to an extract function (defined in 7.5. The extract Function) at the beginning of the
parser function definition (defined in 7. Parser Specification).

4.3 Value Sets

In some cases, the values that determine the transition from one parser state to another
need to be determined at run time. MPLS is one example where the value of the MPLS
label field is used to determine what headers follow the MPLS tag and this mapping may
change dynamically at run time. To support this functionality, P4 supports the notion
of a Parser Value Set. This is a named set of values with a run time API to add and
remove values from the set. The set name may be referenced in parse state transition
conditions (the value list in a case entry).

Parser Value Sets contain values only, no header types or state transition information.
All values in a value set must correspond to the same transition. For example, all MPLS
labels corresponding to an IPv4 transition would exist in one set, while all MPLS labels
corresponding to an IPv6 transition would exist in a different set.

Value sets are declared at the top level of a P4 program, outside of parser functions.
There is a single global namespace for value sets. They should be declared before being
referenced in parser functions.

value_set_declaration ::= parser_value_set value_set_name;

The width of the values is inferred from the place where the value set is referenced. If the
set is used in multiple places and they would infer different widths, then the compiler
must raise an error.

The run time API for updating parser value sets must allow value and mask pairs to be
specified together.

19

4.4 Parser Function BNF 4 PARSER SPECIFICATION

4.4 Parser Function BNF

Here is the BNF for declaring a parser function:

parser_function_declaration ::=

parser parser_state_name { parser_function_body }

parser_function_body ::=

extract_or_set_statement*
return_statement

extract_or_set_statement ::= extract_statement | set_statement

extract_statement ::= extract (header_extract_ref);

header_extract_ref ::=

instance_name |

instance_name "[" header_extract_index "]"

header_extract_index ::= const_value | next

set_statement ::= set_metadata (field_ref, metadata_expr) ;

metadata_expr ::= field_value | field_or_data_ref

return_statement ::=

return_value_type |

return select (select_exp) { case_entry + }

return_value_type ::=

return parser_state_name ; |

return control_function_name ; |

parse_error parser_exception_name ;

case_entry ::= value_list : case_return_value_type ;

value_list ::= value_or_masked [, value_or_masked]* | default

case_return_value_type ::=

parser_state_name |

control_function_name |

parse_error parser_exception_name

value_or_masked ::=

field_value | field_value mask field_value | value_set_name

select_exp ::= field_or_data_ref [, field_or_data_ref] *

20

4.5 The extract Function 4 PARSER SPECIFICATION

field_or_data_ref ::=

field_ref |

latest.field_name |

current(const_value , const_value)

The extract function can only extract to packet headers, not to metadata.

Select functions take a comma-separated list of fields and concatenate their values,
with the left-most field forming the most-significant bits of the concatenated value. The
select operation then compares the values in the order they occur in the program to the
entries to find a matching one.

The mask operator is used to indicate a ternary match should be performed using the
indicated mask value. The comparison between the select expression and the case’s
value is limited to the bits set in the mask; that is, the select expression and value are
each ANDed with the mask before the comparison is made.

Allowing masked matches and value sets means that more than one of the cases could
match. The order of cases determines which takes precedence: the first case in the list
that matches is used.

The header reference latest refers to the most recently extracted header instance within
the parse function. It is an error to reference latest without a preceding extract oper-
ation in the same function.

The field reference current(...) allows the parser to reference bits that have not yet
been parsed into fields. Its first argument is the bit offset from the current offset and its
second argument is the bit width. The result is treated as an unsigned field-value of the
given bit width. It is converted to the metadata field according to the conversion rules
described in Appendix 17.5. Field Value Conversions.

In a set_metadata statement, the field referenced must be in a metadata instance. If the
value has a different width than the destination metadata field, then conversion occurs
as described in Section 15.7.

4.5 The extract Function

The extract function takes a header instance as a parameter. The header instance can-
not be metadata. Extract copies data from the packet at the current offset into that
header instance and moves the current parsing location to the end of that header.

Note that we use the special identifier next (rather than last) for header stacks as we
are extracting into the next available free location.

21

4.6 Parser Exceptions 4 PARSER SPECIFICATION

4.6 Parser Exceptions

There are two possible treatments for errors that occur during parsing: drop or process.
In the drop case, the packet may be immediately dropped by the parser. No match+

action processing is done on the packet. An implementation should provide one or
more counters for such events.

For the alternative, process, the parsing operation is halted, special metadata is set to
indicate that a parser error occurred and the packet is passed to a control function for
match+action processing. The packet is processed according to the installed match+

action rules like any other packet, but those rules may check for a parser error and
apply policies such as forwarding the packet to the control plane.

There are a number of error conditions recognized by P4 which may be triggered im-
plicitly. These are listed in the table below. In addition, the programmer may signal
errors with the parse_error exception in a parser function. They are both handled in
the same manner.

Parser exception handlers may be explicitly declared by the programmer as follows.
Multiple metadata set calls may be invoked followed by a directive either to return to
a control function or to drop the packet. Note that setting metadata will only have an
effect if return is executed.

parser_exception_declaration ::=

parser_exception parser_exception_name {

set_statement *
return_or_drop ;

}

return_or_drop ::= return_to_control | parser_drop
return_to_control ::= return control_function_name

4.6.1 Standard Parser Exceptions

A set of standard exception names are defined as follows. The prefix "pe" stands for
parser exception.

22

5 DEPARSING

Identifier Exception Event
p4_pe_index_out_of_bounds A header stack array index exceeded the declared

bound.
p4_pe_out_of_packet There were not enough bytes in the packet to com-

plete an extraction operation.
p4_pe_header_too_long A calculated header length exceeded the declared

maximum value.
p4_pe_header_too_short A calculated header length was less than the min-

imum length of the fixed length portion of the
header.

p4_pe_unhandled_select A select statement had no default specified but the
expression value was not in the case list.

p4_pe_checksum A checksum error was detected.
p4_pe_default This is not an exception itself, but allows the pro-

grammer to define a handler to specify the default
behavior if no handler for the condition exists.

Table 2: Standard Parser Exceptions

When an exception passes the packet for match+action processing, the exception type
is indicated as metadata; see Section 6.

4.6.2 Default Exception Handling

If a handler for p4_pe_default is defined and an exception occurs for which no
parser_exceptionhandler was defined by the programmer, the p4_pe_defaulthandler
is invoked.

If an exception occurs, no parser_exception handler was defined for that exception,
and no p4_pe_defaulthandler is defined, then the packet is dropped by the parser.

5 Deparsing

At egress, the forwarding element converts the Parsed Representation (as updated by
match+action) to a serial stream of bytes for transmission. This process is called de-
parsing as it reverses the process of parsing.

P4 takes the approach that any format which should be generated on egress should be
represented by the parser used on ingress. Thus, the parse graph represented in the P4
program is used to determine the algorithm used to produce the serialized packet from
the Parsed Representation. Note the following considerations:

23

6 STANDARD INTRINSIC METADATA

• Only headers which are valid are serialized.

• If the parse graph is acyclic, then a topological ordering (that is, a linear order that
respects the parse graph’s ordering) can be generated and used to determine the
order by which headers should be serialized.

• In general, cycles occur in the parse graph when parsing header stacks or a set of
optional headers. These may be treated as a single node in the parse graph and
serialized as a group.

• Metadata fields are not serialized directly (as they are not parsed). Metadata fields
may be copied to packet header fields in match+action processing, allowing them
to be serialized for egress.

6 Standard Intrinsic Metadata

Metadata is state associated with each packet. It can be treated like a set of variables
associated with each packet, read and written by actions executed by tables. However,
some metadata has special significance to the operation of the switch. This is called In-
trinsic Metadata as it has semantics intrinsic to the operation of the machine. Examples
include the ingress port number or the egress selection. The first is an example of read
only data which is set by the switch when the packet arrives; the second is set by table
actions, but then is processed by the Buffer Mechanism and results in the packet being
sent to a particular egress port or ports.

This specification identifies Standard Intrinsic Metadata fields for which support is man-
datory for P4 compliant targets. Although these fields are mandatory, the format of
these fields may be target specific. The definition for these formats must be provided
by the target, either as a header to be automatically included by a compiler, or internally
in the compiler’s implementation.

Standard Intrinisic Metadata is called out in this section either because it is automati-
cally populated (ingress_port for instance) or because it is necessary to describe how
the abstract machine operates (egress_port for instance).

This table shows the fields defined for the metadata instance standard_metadata:

24

6 STANDARD INTRINSIC METADATA

Field Notes
ingress_port The port on which the packet arrived. Set prior to

parsing. Always defined. Read only.
packet_length The number of bytes in the packet. For Ethernet,

does not include the CRC. Set prior to parsing. Can-
not be used for matching or referenced in actions if
the switch is in "cut-through" mode. Read only.

egress_spec Specification of an egress. Undefined until set by
match+action during ingress processing. This is
the “intended” egress as opposed to the committed
physical port(s) (see egress_port below). May be a
physical port, a logical interface (such as a tunnel, a
LAG, a route, or a VLAN flood group) or a multicast
group.

egress_port The physical port to which this packet instance is
committed. Read only. This value is determined
by the Buffering Mechanism and so is valid only for
egress match+action stages. See Section 13 below.
Read only.

egress_instance An opaque identifier differentiating instances of a
replicated packet. Read only. Like egress_port, this
value is determined by the Buffering Mechanism
and is valid only for egress match+action stages. See
Section 13 below.

instance_type Represents the type of instance of the packet:
• normal
• ingress clone
• egress clone
• recirculated
• resubmitted

The representation of this data is target specific.
parser_status Result of the parser. 0 means no error. Otherwise,

the value indicates what error occurred during pars-
ing. The representation of this data is target specific.

parser_error_location If a parser error occurred, this is an indication of the
location in the parser program where the error oc-
curred. The representation of this data is target spe-
cific.

Table 3: Standard Intrinsic Metadata Fields

Targets may provide their own definitions of intrinsic metadata, although programs

25

7 COUNTERS, METERS AND REGISTERS

which depend on such definitions may not be portable. See [3] for the intrinsic meta-
data fields supported by the reference target (BMv2 Simple Switch Target).

7 Counters, Meters and Registers

Counters, meters and registers maintain state for longer than one packet. Together they
are called stateful memories. They require resources on the target and hence are man-
aged by a compiler.

In this section, we refer to an individual counter, meter or register as a cell. In P4, state-
ful memories are organized into named arrays of cells (all of the same type of object).
A cell is referenced by its array name and index. Cells are accessed or updated by the
actions applied by a table. Targets may have limitations on the amount of computation
that can be done to determine the index of the cell being accessed. They may also have
limitations on the updates that can be done to the cell’s contents.

For example:

counter ip_pkts_by_dest {

type : packets;

direct : ip_host_table;

}

declares a set of counters attached to the table named ip_host_table. It allocates one
counter cell for each entry in that table.

Another example:

meter customer_meters {

type : bytes;

instance_count : 1000;

}

declares an array of 1000 meters named customer_meters. These may be referenced
from the actions of any table (though usually only one or two tables will be likely to
reference them).

P4 allows stateful memory resources to be global – that is, referenced by any table – or to
be static – bound to one table instance. Normally, multiple table entries, whether or not
they are in the same table, may refer to the same cell. This is called indirect access. P4
also allows direct access where the stateful memory resource is bound to one table and
each entry in the table is allocated its own dedicated cell in that memory. An example
of this is where every table entry has its own counter.

26

7.1 Counters 7 COUNTERS, METERS AND REGISTERS

A compiler will attempt to allocate the resources required by the program according
to availability on the target. However, target constraints may make this impossible;
for example, a target may not allow references to the same global resource in both the
ingress and egress pipelines.

Counters, meters and registers are referenced in special primitive actions as defined in
Section 9.1.

7.1 Counters

Counters are declared as follows.

counter_declaration ::=

counter counter_name {

type : counter_type ;

[direct_or_static ;]

[instance_count : const_expr ;]

[min_width : const_expr ;]

[saturating ;]

}

counter_type ::= bytes | packets | packets_and_bytes
direct_or_static ::= direct_attribute | static_attribute

direct_attribute ::= direct : table_name

static_attribute ::= static : table_name

The min_width attribute indicates the minimum number of bits required for each cell.
The compiler or target may allocate more bits to each cell.

The saturating attribute indicates that the counter will stop counting if it reaches its
maximum value (based on its actual bit-width). Otherwise the counter will wrap.

If the counter is declared with the direct attribute, one counter is associated with each
entry in the named table. In this case, no count action needs to be given for the table
actions; they are automatically updated whenever the corresponding entry is applied.
As a result, counter names declared as direct are not allowed to be referenced in the
count primitive and a compiler must raise an error if this occurs.

Run time APIs should be provided to indicate the actual width of a given counter. This
is necessary for calculating the maximum value a counter may take (which is necessary
for properly managing saturation or roll over).

If the counter is not declared direct, actions must reference the counter by name and
index.

27

7.2 Meters 7 COUNTERS, METERS AND REGISTERS

If the counter is declared with the static attribute, the counter resource is dedicated to
the indicated table. The compiler must raise an error if the counter name is referenced
by actions used in another table.

The instance_count attribute indicates the number of instances (cells) of the counter
to allocate. The instance_count attribute is required if the counter is not declared
with the direct attribute. The compiler should raise an error if both instance_count

and direct are specified together, or if neither direct nor instance_count are speci-
fied.

A bytes type counter gets incremented by the packet length in bytes whenever the
count action is executed either implicitly (in case of direct) or explictly (in case of
static) for the counter. A packets type counter gets incremented by just one when-
ever the count action is executed for the counter. A packets_and_bytes type counter is
comprised of two sub-counters internally, and each sub-counter is incremented by the
packet length and by one respectively.

7.2 Meters

Meter declarations follow those of counters.

meter_declaration ::=

meter meter_name {

type : meter_type ;

[result : field_ref ;]

[direct_or_static ;]

[instance_count : const_expr ;]

}

meter_type ::= bytes | packets

Meters are stateful objects that measure the data rate, either in packets or bytes per
second, and output the result as one of three colors: red, yellow or green, which are
encoded as a 2-bit-wide field.

The encoding of these values is target-specific. It is, however, expected that each tar-
get will define the appropriate constants: METER_COLOR_RED, METER_COLOR_YELLOW, and
METER_COLOR_GREEN, which are understood by the compiler and hence can be used in a
portable P4 program.

P4 specification does not currently mandate any specific metering algorithm for the
meter implementations, and hence ascribing the detailed semantics of the colors is be-
yond the scope of P4. While the three-color marking algorithms, specified in RFC 2697
and RFC 2698 serve as good references, other options are also possible. Subsequently,

28

7.3 Registers 7 COUNTERS, METERS AND REGISTERS

meter configuration also remains target-specific and not defined in P41.

If the meter is declared with the direct attribute, one meter is associated with each
entry in the named table. In this case, no meter action needs to be given for the ta-
ble actions; the meters are automatically updated whenever the corresponding entry is
applied, and the meter result (i.e., color) is stored in the field specified by the result at-
tribute. Hence, the result attribute is required if a meter is declared with the direct at-
tribute. Consequently meter names declared as direct are not allowed to be referenced
in the execute_meter primitive, and a compiler must raise an error if this occurs.

If the meter is declared with the static attribute, it may only be referenced by actions
invoked in the indicated table via the execute_meterprimitive. The compiler must raise
an error if a different table attempts to invoke an action with this meter.

The instance_count attribute indicates the number of instances (cells) of the meter to
allocate. The instance_count attribute is required if the meter is not declared with the
direct attribute.

7.3 Registers

Registers are stateful memories whose values can be read and written in actions. They
are like counters, but can be used in a more general way to keep state.

A simple example use might be to verify that a "first packet" was seen for a particular
type of flow. A register cell would be allocated to the flow, initialized to "clear". When
the protocol signalled a "first packet", the table would match on this value and update
the flow’s cell to "marked". Subsequent packets in the flow could would be mapped to
the same cell; the current cell value would be stored in metadata for the packet and a
subsequent table could check that the flow was marked as active.

Register declarations are similar to those of meters and counters. Registers are declared
with a width attribute that indicates the bit-width of each instance of the register.

register_declaration ::=

register register_name {

width_declaration ;

[direct_or_static ;]

[instance_count : const_value ;]

[attribute_list ;]

}

width_declaration ::= width : const_value ;

1In general, any run-time configuration aspects related to the control plane are currently out of scope
of this P4 spec. In future, the P4 community may address these issues in a separate spec.

29

9 ACTIONS

attribute_list ::= attributes : attr_entry

attr_entry ::= signed | saturating | attr_entry , attr_entry

The instance_count attribute indicates the number of instances (cells) of the register
to allocate. The instance_count attribute is required if the register is not declared with
the direct attribute.

A register can be accessed by register_read and register_write primitives, which will
be detailed in the next section.

8 Match+Action Table Overview

P4 allows the specification of table instances with the table declaration. This declara-
tion defines the exact set of fields that should be examined to find a match (a "hit"). As-
sociated with each entry is an indication of an action to take should the entry match.

If no entry is found that matches the current packet, the table is said to "miss"; in this
case a default action for the table may be applied.

Each entry in a match+action table has the following parts:

• The match values for comparison with the Parsed Representation of the packet.
The format of these values determined by the table declaration.

• A reference to an action function, if the entry should match. The set of allowed
action functions is specified in the table declaration.

• Parameter values to pass to the action when the action function is called. The for-
mat of these parameters is determined by the particular action function selected
by the entry.

9 Actions

In P4, actions are declared imperatively as functions. These function names are used
when populating the table at run time to select the action associated with each entry.
These are called compound actions to differentiate them from primitive actions, or sim-
ply actions when the context is clear.

Action functions take parameters. The values passed to these parameters are programmed
into the table entry by the run time API. When that entry is selected due to a match,
those parameters are passed to the action. The P4 table declarations might be used
to generate run time APIs which would have parameters corresponding to the action

30

9 ACTIONS

parameters for the entry’s action. Typically, the compiler would be responsible for en-
suring that the values in the run time APIs are properly mapped to and consistent with
the P4 program specification.

In addition to values from the matching table entry, the action operation has access to
headers and metadata in the Parsed Representation.

Action functions are built from primitive actions. A standard set of primitive actions are
listed in the following section, although a target may support additional target-specific
primitives. Using target-specific primitives limits the portability of the resulting pro-
gram.

Here are two example functions from the mTag example. The first indicates a copy of
the packet should be sent to the CPU. The parameters cpu_code and bad_packet are
exposed to the run time API and will be set according to the values provided when a
table entry is added.

// Copy the packet to the CPU;

action common_copy_pkt_to_cpu(cpu_code, bad_packet) {

modify_field(local_metadata.copy_to_cpu, 1);

modify_field(local_metadata.cpu_code, cpu_code);

modify_field(local_metadata.bad_packet, bad_packet);

}

This function sets up the mTag. It would only be invoked on a edge switch.

// Add an mTag to the packet; select egress spec based on up1

action add_mTag(up1, up2, down1, down2) {

add_header(mtag);

// Copy VLAN ethertype to mTag

modify_field(mtag.ethertype, vlan.ethertype);

// Set VLAN’s ethertype to signal mTag

modify_field(vlan.ethertype, 0xaaaa);

// Add the tag source routing information

modify_field(mtag.up1, up1);

modify_field(mtag.up2, up2);

modify_field(mtag.down1, down1);

modify_field(mtag.down2, down2);

// Set the destination egress port as well from the tag info

modify_field(standard_metadata.egress_spec, up1);

}

31

9.1 Primitive Actions 9 ACTIONS

9.1 Primitive Actions

P4 exposes a standard set of primitive actions. Specific targets may support additional
primitive actions. How these additional primitive actions are exposed to the front-end
of a compiler for semantic checking is out of scope of this document.

Not all targets will support all standard primitive actions. Target switches may have
limits on when variables are bound and what combinations of parameter types are al-
lowed.

Here is a brief summary of standard primitive actions. More detailed documentation is
below.

API name Summary
add_header Add a header to the packet’s Parsed Repre-

sentation
copy_header Copy one header instance to another.
remove_header Mark a header instance as invalid.
modify_field Set the value of a field in the packet’s Parsed

Representation.
add_to_field Add a value to a field.
add Add two values together and store in a field.
subtract_from_field Subtract a value from a field.
subtract Subtract a value from another value and

store in a field.
modify_field_with_hash_based_offset Apply a field list calculation and use the re-

sult to generate an offset value.
modify_field_rng_uniform Generate a random number from a given

range and store in a field.
bit_and Perform bitwise AND operation on two val-

ues and store in a field
bit_or Perform bitwise OR operation on two val-

ues and store in a field
bit_xor Perform bitwise XOR operation on two val-

ues and store in a field

32

9.1 Primitive Actions 9 ACTIONS

API name Summary
shift_left Performs the operation dst = value1 <<

value2
shift_right Performs the operation dst = value1 >>

value2
truncate Truncate the packet on egress.
drop Drop a packet (in the egress pipeline).
no_op Placeholder action with no effect.
push Push all header instances in an array down

and add a new valid header at the top.
pop Pop header instances from the top of an ar-

ray, moving all subsequent array elements
up.

count Update a counter.
execute_meter Execute a meter operation.
register_read Read from an indexed instance of a register

and store the value into a field.
register_write Write a value into an indexed instance of a

register.
generate_digest Generate a packet digest and send to a re-

ceiver.
resubmit Resubmit the original packet to the parser

with metadata.
recirculate Resubmit the packet after all egress modifi-

cations.
clone_ingress_pkt_to_ingress Send a copy of the original packet to the

parser. Alias: clone_i2i.
clone_egress_pkt_to_ingress Send a copy of the egress packet to the

parser. Alias: clone_e2i.
clone_ingress_pkt_to_egress Send a copy of the original packet to the

Buffer Mechanism. Alias: clone_i2e.
clone_egress_pkt_to_egress Send a copy of the egress packet to the

Buffer Mechanism. Alias: clone_e2e.

Table 4: Primitive Actions

Action parameters are typed as follows:

33

9.1 Primitive Actions 9 ACTIONS

Notation Type Description
HDR The literal name of a header instance.
ARR The name of a header instance array, with no subscript.
FLD A field reference of form header_instance.field_name which

refers to the Parsed Representation.
FLDLIST A field list instance declared with field_list.
VAL An immediate value or a value from a table entry’s action pa-

rameters. The latter is represented as a parameter from the
enclosing function (see examples below).

C-REF The name of a counter array; determined at compile time.
M-REF The name of a meter array; determined at compile time.
R-REF The name of a register array; determined at compile time.
FLC-REF Field list calculation reference; determined at compile time.

Table 5: Action Parameter Types

Here is the API specification for standard primitive actions.

add_header(header_instance)

Summary
Add a header to the packet’s Parsed Representation

Parameters
header_-

instance

(HDR) The name of the header instance to add.

Description
The indicated header instance is set valid. If the header instance was
invalid, all its fields are initialized to 0, and if the header instance was
already valid, it is not changed.

copy_header(destination, source)

Summary
Copy one header instance to another.

Parameters
destination (HDR) The name of the destination header instance.
source (HDR) The name of the source header instance.

Description
Copy all the field values from the source header instance into the des-
tination header instance. If the source header instance was invalid, the
destination header instance becomes invalid; otherwise the destination
will be valid after the operation. The source and destination instances
must be of the same type.

34

9.1 Primitive Actions 9 ACTIONS

remove_header(header_instance)

Summary
Mark a header instance as invalid.

Parameters
header_-

instance

(HDR) The name of the header instance to remove.

Description
The indicated header instance is marked invalid. It will not be available
for matching in subsequent match+action stages. The header will not
be serialized on egress. All field values in the header instance become
uninitialized.

modify_field(dest, value [, mask])

Summary
Set the value of the given field in packet’s Parsed Representation

Parameters
dest (FLD) The name of the field instance to modify (des-

tination).
value (VAL or FLD) The value to use (source).
mask (VAL) An optional mask to use identifying the bits to

change.
Description

Update the indicated field’s value. The value parameter may be any of:
• An immediate value (a number).
• A value from the matching entry’s action parameter data; in this

case, the name of a parameter from the enclosing function is used.
• A Parsed Representation field reference.

This allows the programmer to copy one field to another. If the width of
the source field, value, or the mask is greater than that of the destination
field, then the value in the source field is first truncated to the low order
bits to fit into the destination field. If the width of the source field is
less than that of the destination, it will be coerced to the larger field size
according to its signedness.
If the parent header instance of dest is not valid, the action has no ef-
fect. If value is a field reference and its parent header is not valid, the
operation leaves dest with an undefined value.
If mask is specified, then the field becomes (current_value & ∼ mask)

| (value & mask). If mask is not specified, the operation has the effect
of a "set", modifying all bits of the destination.

35

9.1 Primitive Actions 9 ACTIONS

add_to_field(dest, value)

Summary
Add a value to a field.

Parameters
dest (FLD) The name of the field instance to be modified.
value (VAL or FLD) The value to use.

Description
The dest field’s value is updated by adding the value parameter. The
value parameter may be from a table parameter, an immediate value or
a field reference; see modify_field above. If value is a field reference
and its parent header is not valid, then the operation leaves dest with
an undefined value. A description of the logical behavior follows in the
Section 9.1.1 below. If value is an immediate value, it may be negative.

add(dest, value1, value2)

Summary
Add value1 and value2 and store in dest.

Parameters
dest (FLD) The name of the field instance to be modified.
value1 (VAL or FLD) The first value to use.
value2 (VAL or FLD) The second value to use.

Description
The dest field’s value is updated with the result of adding the two value
parameters. Each value parameter may be from a table parameter, an
immediate value or a field reference; see modify_field above. If either
value is a field reference and its parent header is not valid, then the op-
eration leaves dest with an undefined value. A description of the logical
behavior follows in the Section 9.1.1 below. If a value is an immediate
value, it may be negative.

36

9.1 Primitive Actions 9 ACTIONS

subtract_from_field(dest, value)

Summary
Subtract a value from a field.

Parameters
dest (FLD) The name of the field instance to be modified.
value (VAL or FLD) The value to use.

Description
The destfield’s value is updated by subtracting the value parameter. The
value parameter may be from a table parameter, an immediate value or
a field reference; see modify_field above. If value is a field reference
and its parent header is not valid, then the operation leaves dest with an
undefined value. If a value is an immediate value, it may be negative.

subtract(dest, value1, value2)

Summary
Subtract value2 from value1 and store in dest.

Parameters
dest (FLD) The name of the field instance to be modified.
value1 (VAL or FLD) The first value to use.
value2 (VAL or FLD) The second value to use.

Description
The dest field’s value is updated with the result of subtracting value2

from value1. Each value parameter may be from a table parameter, an
immediate value or a field reference; see modify_field above. If either
value is a field reference and its parent header is not valid, then the op-
eration leaves dest with an undefined value. If a value is an immediate
value, it may be negative.

37

9.1 Primitive Actions 9 ACTIONS

modify_field_with_hash_based_offset(dest, base, field_list_calc, size)

Summary
Apply a field list calculation to compute a hash value.

Parameters
dest (FLD) The name of the field instance to be modified

(destination).
base (VAL) The base value to add to the hash value.
field_list_-

calc

(FLC-REF) The field list calculation to use to generate
the hash value.

size (VAL) The size of the hash value range. Must be larger
than 0.

Description
The field list calculation is executed to generate a hash value. The hash
value is used to generate a value between base and (base + size - 1)

by calculating (base + (hash_value % size)). The result can be used
as a hash digest of a long key (such as 5-tuple) or as an offset/index to
reference a register array. Normal value conversion takes place when
setting dest to the result.
If any of the fields in the field_list_calc have a parent header that is
not valid, then those fields are left out of the field list for the purposes of
calculating the hash value.

modify_field_rng_uniform(dest, lower_bound, upper_bound)

Summary
Generate a random integer number from a given range.

Parameters
dest (FLD) The name of the field instance to be modified

(destination).
lower_bound (VAL or FLD) The lower bound (inclusive) of the

range.
upper_bound (VAL or FLD) The upper bound (inclusive) of the

range.
Description

A random integer number is chosen in the inclusive range from lower_-

bound to upper_bound and stored in dest. Targets may impose different
restrictions to lower_bound to upper_bound: for example, a target may
require lower_bound to be zero and upper_bound to be 2**n - 1.
If either of lower_bound or upper_bound is a field reference and its parent
header is not valid, then the operation leaves dest with an undefined
value.

38

9.1 Primitive Actions 9 ACTIONS

bit_and(dest, value1, value2)

Summary
Compute a bitwise AND of two values.

Parameters
dest (FLD) The name of the field instance to be modified.
value1 (VAL or FLD) The first value to use.
value2 (VAL or FLD) The second value to use.

Description
The destfield’s value is updated with the result of bitwise AND of value1
and value2. Each value parameter may be from a table parameter, an
immediate value or a field reference; see modify_field above. If either
value is a field reference and its parent header is not valid, then the op-
eration leaves dest with an undefined value. Targets may require dest,
value1 and value2 to be the same bit width.

bit_or(dest, value1, value2)

Summary
Compute a bitwise OR of two values.

Parameters
dest (FLD) The name of the field instance to be modified.
value1 (VAL or FLD) The first value to use.
value2 (VAL or FLD) The second value to use.

Description
The dest field’s value is updated with the result of bitwise OR of value1
and value2. Each value parameter may be from a table parameter, an
immediate value or a field reference; see modify_field above. If either
value is a field reference and its parent header is not valid, then the op-
eration leaves dest with an undefined value. Targets may require dest,
value1 and value2 to be the same bit width.

39

9.1 Primitive Actions 9 ACTIONS

bit_xor(dest, value1, value2)

Summary
Compute a bitwise XOR of two values.

Parameters
dest (FLD) The name of the field instance to be modified.
value1 (VAL or FLD) The first value to use.
value2 (VAL or FLD) The second value to use.

Description
The dest field’s value is updated with the result of bitwise XOR of value1
and value2. Each value parameter may be from a table parameter, an
immediate value or a field reference; see modify_field above. If either
value is a field reference and its parent header is not valid, then the op-
eration leaves dest with an undefined value. Targets may require dest,
value1 and value2 to be the same bit width.

shift_left(dest, value1, value2)

Summary
Bitwise shift left of value1 by value2 number of bits.

Parameters
dest (FLD) The name of the field instance to be modified.
value1 (VAL or FLD) The value to shift.
value2 (VAL or FLD) The number of bits to shift. Must be

positive.
Description

The dest field’s value is updated with the result of value1 << value2.
Each value parameter may be from a table parameter, an immediate
value or a field reference; see modify_field above. If either value is
a field reference and its parent header is not valid, then the operation
leaves dest with an undefined value. value2 must be positive.

40

9.1 Primitive Actions 9 ACTIONS

shift_right(dest, value1, value2)

Summary
Bitwise shift right of value1 by value2 number of bits.

Parameters
dest (FLD) The name of the field instance to be modified.
value1 (VAL or FLD) The value to shift.
value2 (VAL or FLD) The number of bits to shift. Must be

positive.
Description

The dest field’s value is updated with the result of value1 >> value2.
Each value parameter may be from a table parameter, an immediate
value or a field reference; see modify_field above. If either value is
a field reference and its parent header is not valid, then the operation
leaves dest with an undefined value. value2 must be positive.

truncate(length)

Summary
Truncate the packet on egress.

Parameters
length (VAL) The number of bytes to transmit.

Description
Indicate that the packet should be truncated on egress. The number of
bytes to transmit from the packet is indicated in the parameter to the
action. If the packet has fewer bytes than length, then it will not be
changed.
Normally this action would be specified on the egress pipeline, though
this is not required.

drop()

Summary
Drop the packet on egress.

Description
Indicate that the packet should not be transmitted. This primitive is in-
tended for the egress pipeline where it is the only way to indicate that the
packet should not be transmitted. On the ingress pipeline, this primitive
is equivalent to setting the egress_spec metadata to a drop value (spe-
cific to the target).
If executed on the ingress pipeline, the packet will continue through
the end of the pipeline. A subsequent table may change the value of
egress_spec which will override the drop action. The action cannot be
overridden in the egress pipeline.

41

9.1 Primitive Actions 9 ACTIONS

no_op()

Summary
Take no action.

Description
This indicates that no action should be taken on the packet. Control
flow continues as per the current control function specification.

push(array, count)

Summary
Push all header instances in an array down and add a new valid header
at the top.

Parameters
array (ARR) The name of the instance array to be modified.
count (VAL) A value indicating the number of elements to

push.
Description

This primitive is used to initialize elements at the top of a header stack.
Existing elements will be shifted by count: an element at index N will
be moved to index N+count and count valid elements are created at in-
dices 0 to count-1. This primitive leaves the array’s size constant; any
elements pushed to indices beyond the static array size will be lost.

pop(array, count)

Summary
Pop header instances from the top of an array, moving all subsequent
array elements up.

Parameters
array (ARR) The name of the instance array to be modified.
count (VAL) A value indicating the number of elements to

pop.
Description

This primitive is used to remove elements from a header stack. An el-
ement at index N will be moved to index N-count, and the elements at
indices 0 to count-1 will be lost. The bottom-most elements that had
nothing shifted into them are invalidated. Popping from an empty array
(or popping more elements than are in the array) results in an empty
array.

42

9.1 Primitive Actions 9 ACTIONS

count(counter_ref, index)

Summary
Update a counter.

Parameters
counter_ref (C-REF) The name of the counter array.
index (VAL) The offset in the array to get a counter refer-

ence.
Description

The given counter is incremented by 1, if it is a packet counter, or by the
packet length, if it is a byte counter. The counter array is determined at
compile time. The index may be a table entry parameter or determined
at compile time. It is an error to reference a direct-mapped counter ar-
ray from this action.

execute_meter(meter_ref, index, field)

Summary
Execute a meter operation.

Parameters
meter_ref (M-REF) The name of the meter array.
index (VAL) The offset in the array to get a meter reference.

Applicable only if the meter type is indirect.
field (FLD) A field reference to store the meter state.

Description
The given meter, determined by meter_ref and index, is executed. If
the meter is direct, then index is ignored as the table entry determines
which cell to reference. The length of the packet is passed to the me-
ter. The state of meter is updated and the meter returns information (a
"color") which is stored in field. If the parent header of field is not
valid, the meter state is updated, but the state of the meter is discarded.

43

9.1 Primitive Actions 9 ACTIONS

register_read(dest, register_ref, index)

Summary
Read from a register.

Parameters
dest (FLD) The name of the field instance to store the reg-

ister state (destination).
register_ref (R-REF) The name of the register array.
index (VAL) The offset in the array to get a register refer-

ence. Applicable only if the register type is indirect.
Description

The given register, determined by register_ref and index, is accessed
and its value is stored in dest. If the register is direct, then index is ig-
nored as the table entry determines which cell to reference.

register_write(register_ref, index, value)

Summary
Write to a register.

Parameters
register_ref (R-REF) The name of the register array.
index (VAL) The offset in the array to get a register refer-

ence. Applicable only if the register type is indirect.
value (VAL or FLD) The value to store.

Description
The value is stored into the given register, determined by register_-

ref and index. The value parameter may be from a table parameter, an
immediate value or a field reference; see modify_field above. If the reg-
ister is direct, then index is ignored as the table entry determines which
cell to reference.

44

9.1 Primitive Actions 9 ACTIONS

generate_digest(receiver, field_list)

Summary
Generate a digest of a packet and send to a receiver.

Parameters
receiver (VAL) An opaque value identifying the receiver.
field_list (FLDLIST) A list of field references.

Description
The indicated field list is populated with the packet’s data and sent by
a target-specific mechanism to an agent capable of processing the ob-
ject. The specification of receivers is outside of the scope of P4. Example
receivers might be the CPU through a channel parallel to that for trans-
ferring packets, or a co-processor connected by a bus dedicated to this
operation.
This function might also be used to represent a self-updating operation
such as address learning.

resubmit(field_list)

Summary
Applied in the ingress pipeline, mark the packet to be resubmitted to the
parser.

Parameters
field_list (FLDLIST) A list of metadata field references.

Description
Only valid on the ingress pipeline.
The packet is marked for resubmission. It will complete the ingress
pipeline to generate any necessary metadata values. Then, the original
packet data will be resubmitted to the parser with values of the fields in
field_list that those fields have at the time ingress processing com-
pletes. These values replace the normal initial values of the metadata
fields indicated in the initializer of the instance declaration. Only meta-
data (and not header) fields can be specified in the field_list.
If multiple resubmit actions get executed on one packet, only the field
list from the last resubmit action is used, and only one packet is resub-
mitted.
The resubmitted packet will have instance_type set to indicate that it is
a resubmitted packet.
See Section 14 for more details.

45

9.1 Primitive Actions 9 ACTIONS

recirculate(field_list)

Summary
On egress, mark the packet to be resubmitted to the parser.

Parameters
field_list (FLDLIST) A list of metadata field references.

Description
Only valid on the egress pipeline.
The packet is marked for recirculation. It will complete the egress
pipeline and be deparsed. This version of the packet is then recirculated
to the parser with values of the fields in field_list that those fields
have at the time egress processing completes. These values replace the
normal initial values of the metadata fields indicated in the initializer of
the instance declaration. Only metadata (and not header) fields can be
specified in the field_list.
If multiple recirculate actions get executed on one packet, only the field
list from the last recirculate action is used, and only one packet is recir-
culated.
The recirculated packet will have instance_type set to indicate that it is
a recirculated packet.
See Section 14 for more details.

46

9.1 Primitive Actions 9 ACTIONS

clone_ingress_pkt_to_ingress(clone_spec, field_list)

Summary
Generate a copy of the original packet and submit it to the ingress
parser.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) A list of metadata field references.

Description
This action indicates that the switch should generate a copy of the orig-
inal packet (prior to any modifications from match+action) and submit
it to the parser as an independent packet instance. This may occur im-
mediately when the action executes or be deferred until the the original
packet is buffered.
The original packet continues to be processed as though the clone had
not been produced.
The clone_spec is used to allow the configuration of other target spe-
cific characteristics of the clone operation. It may be a simple identi-
fier indicating a session. For instance, the clone operation may support
truncating the cloned instance. The truncation length would be a prop-
erty of the session. The concept of session is optional and the parameter
may be ignored on some targets.
The cloned instance will have instance_type set to indicate that it is an
ingress clone.
The metadata fields indicated in field_list (their values when ingress
processing is complete) are copied to the Parsed Representation of the
clone instance. These values replace the normal initial values of the
metadata fields indicated in the initializer of the instance declaration
(which occurs before parsing). Only metadata (and not header) fields
can be specified in the field_list.
The function may also be referred to as clone_i2i.
See the Section 14 for more details.

47

9.1 Primitive Actions 9 ACTIONS

clone_egress_pkt_to_ingress(clone_spec, field_list)

Summary
Generate a duplicate of the egress packet and submit it to the parser.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) A list of metadata field references.

Description
The packet is marked for cloning at egress. Once the original packet
completes the egress pipeline, a copy of the deparsed packet (including
all modifications due to match+action) is passed to the parser as an in-
dependent packet instance. The original packet is forwarded as normal.
The clone_spec is used to allow the configuration of other target specific
characteristics of the clone operation as described in clone_ingress_-

pkt_to_ingress.
The metadata fields indicated in field_list are copied to the clone in-
stance. These values (the values at the end of egress processing) replace
the normal initial values of the metadata fields indicated in the initial-
izer of the instance declaration. Only metadata (and not header) fields
can be specified in the field_list.
The cloned instance will have instance_type set to indicate that it is an
ingress clone.
The function may also be referred to as clone_e2i.
See the Section 14 for more details.

48

9.1 Primitive Actions 9 ACTIONS

clone_ingress_pkt_to_egress(clone_spec, field_list)

Summary
Generate a copy of the original packet and submit it to the Buffering
Mechanism.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) A list of metadata field references.

Description
This action indicates that the switch should generate a copy of the orig-
inal packet. When egress control flow function starts to process the
cloned copy, the metadata fields, specified in the field_list will be ini-
tialized to the same values as they would have at the moment the orig-
inal packet reaches the end of the ingress control flow function. Only
metadata (and not header) fields can be specified in the field_list.
The clone of the packet is submitted directly to the Buffering Mecha-
nism as an independent packet instance. It does not go through ingress
match+action processing.
The original packet continues to be processed as though the clone had
not been produced.
The clone_spec is used to allow the configuration of other target specific
characteristics of the clone operation as described in clone_ingress_-

pkt_to_ingress. In addition to other session attributes, clone_spec de-
termines the egress specification (standard metadata egress_spec) that
is presented to the Buffering Mechanism.
The cloned instance will have instance_type set to indicate that it is an
egress clone.
The function may also be referred to as clone_i2e.
See the Section 14 for more details.

49

9.1 Primitive Actions 9 ACTIONS

clone_egress_pkt_to_egress(clone_spec, field_list)

Summary
Duplicate the egress version of the packet and submit it to the Buffering
Mechanism.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) A list of metadata field references.

Description
The packet is marked for cloning at egress. Once the original packet
completes the egress pipeline, the packet and its Parsed Representa-
tion of packet headers (including all modifications due to match+action)
along with the metadata fields specified in field_list (their values at
the end of egress processing) are submitted to the Buffering Mechanism
as a new packet instance. Only metadata (and not header) fields can be
specified in the field_list.
The original packet is forwarded as normal.
The clone_specis used to allow the configuration of other target specific
characteristics of the clone operation as described in clone_ingress_-

pkt_to_ingress. In addition to other session attributes, clone_spec de-
termines the egress specification (standard metadata egress_spec) that
is presented to the Buffering Mechanism.
The cloned instance will have instance_type set to indicate that it is an
egress clone.
The function may also be referred to as clone_e2e.
See the Section 14 for more details.

9.1.1 Field Assignment and Saturation Attributes

Recall that a field may have sign and saturation attributes in its declaration. The logical
behavior of the add_to_field is determined by these attributes as shown in the following
logic for an unsigned field.

tmp = field + value

if (field.saturating && tmp < field.min)

field = field.min

else if (field.saturating && tmp > field.max)

field = field.max

else

field = tmp % 2 f i eld .wi d th

50

9.2 Action Definitions 9 ACTIONS

where:

• field.saturating: boolean value indicating that the field is saturating.

• field.min: minimum allowed value determined by the field’s bit width and signed-
ness

• field.max: maximum allowed value determined by the field’s bit width and signed-
ness

• field.width: bit width of field

9.1.2 Parameter Binding

In several primitive actions above, a parameter may take one of:

• An immediate value; or

• A value from a table entry’s action parameter data; or

• A reference to a field instance whose current value is used.

The P4 language does not specify limits on the specification of which of these may be
exercised at a given time. However, it should be noted that there is a qualitative differ-
ence (in the sense that it imposes different functional requirements on the underlying
target) between specifying a particular field instance in a P4 program and allowing a run
time API to specify the field instance to reference when the table entry is added.

This is a binding-time issue; the first binds the field reference at compile time while
the second allows run time binding. Targets may impose constraints on the flexibility
allowed for such parameter binding. The difference must also be reflected in the run
time interfaces that are generated.

9.2 Action Definitions

Actions are declared as functions.

action_function_declaration ::=

action action_header { action_statement * }

action_header ::= action_name "(" [param_list] ")"

param_list ::= param_name [, param_name]*
action_statement ::= action_name "(" [arg [, arg]*] ")" ;

arg ::= param_name | field_value | field_ref | header_ref

51

9.2 Action Definitions 9 ACTIONS

Parameter references to counters, meters or registers are by index and so pass through
the param_name or field_value arguments.

Action function declarations must obey the following conventions:

• All parameters specified in the action_header are required. Optional parameters
are not supported.

• The body of the function contains only:

• Calls to primitive actions.

• Calls to other action functions.

• Recursion is not allowed.

In the following example, the parameters dst_mac, src_mac and vid would be exposed
via a run time API for adding entries to the table which used this action. The values
passed to that API would then be set in the table entry being added so that they could
be passed to this action for packets that hit that entry.

action route_ipv4(dst_mac, src_mac, vid) {

modify_field(ethernet.dst_addr, dst_mac);

modify_field(ethernet.src_addr, src_mac);

modify_field(vlan_tag.vid, vid);

add_to_field(ipv4.ttl, -1);

}

9.2.1 Parallel and Sequential Semantics

In any instruction execution model, identifying whether a set of instructions is executed
in parallel or in sequence must be identified in order to determine the behavior of the
system. As an example, consider the statements:

modify_field(hdr.fieldA, 1);

modify_field(hdr.fieldB, hdr.fieldA);

Supposing that hdr.fieldA started with a value of 0, the question is: what value will
hdr.fieldB have after this instruction set is executed? Will it be 0 or 1? With sequen-
tial semantics, the first statement is completed, leaving 1 in fieldA; then the second
instruction is executed, propagating the 1 to fieldB. With parallel semantics, both ac-
tions are started at the same time, so the evaluation of hdr.fieldA in the second in-
struction resolves to 0 (since it has not yet changed), and so hdr.fieldB receives the
value 0.

52

10 ACTION PROFILE DECLARATIONS

P4 assumes sequential semantics for the application of all the primitive actions exe-
cuting as a result of a match in a given table. The execution of actions across differ-
ent tables also assumes sequential semantics where the sequence is determined by the
control flow, as described in Section 12.

10 Action profile declarations

In some instances, action parameter values are not specific to a match entry but could
be shared between different entries. Some tables might even want to share the same set
of action parameter values. This can be expressed in P4 with action profiles. Action pro-
files are declarative structures specifying a list of potential actions, and possibly other
attributes.

Entries are inserted at run time to specify the single action to be run if that entry is
chosen - among the candidates included in the action profile declaration-, as well as
the action parameter values to use.

Instead of statically binding one particular action profile entry to each match entry,
one might want to associate multiple action profile entries with a match entry and let
the system (i.e., data plane logic) dynamically bind one of the action profile entries to
each class of packets. The dynamic_action_selection attribute enables such behav-
ior. When dynamic_action_selection is specified, action profile entries can be bun-
dled into groups by the run time, and a match entry can then tied to a group of action
profile entries. To dictate a specific data-plane mechanism that chooses a particular ac-
tion profile entry in a group, one should provide an action selector. An action selector
chooses a particular action profile entry for each packet by either pseudo-randomly or
predictably deriving a decision from header fields and/or metadata.

Here is the BNF for an action profile declaration:

action_profile_declaration ::=

action_profile action_profile_name {

action_specification

[size : const_value ;]

[dynamic_action_selection : selector_name ;]

}

action_specification ::=

actions { [action_name] + }

action_selector_declaration ::=

action_selector selector_name {

53

11 TABLE DECLARATIONS

selection_key : field_list_calculation_name ;

}

Action profiles are declared and applied with the following conventions:

• The size attribute indicates the number of entries required for the action pro-
file. If this cannot be supported, an error will be signaled when the declaration is
processed. If this attribute is omitted, there is no guarantee as to the number of
entries that the action profile will be able to accomodate at run time.

11 Table Declarations

Tables are declarative structures specifying match and action operations, and possibly
other attributes. The action specification (or action profile specification) in a table in-
dicates which action functions are available to this table’s entries.

The table declaration specifies a list of field matches that are used for matching packets.
A field match is either a reference to a header, the validity bit for a header, a reference to
a field, or a masked reference to a field. Note that masked field references should not be
confused with masks for ternary matches. The masks specified in table declarations are
statically applied to fields before the start of the match process. This allows arbitrary
subfields to be used in exact match tables. This is intended for exact match tables; it is
allowed for ternary matches in the syntax, though it is functionally redundant.

Match semantics are always the conjunction (AND) of all field match specifications.

Here is the BNF for a table declaration:

table_declaration ::=

table table_name {

[reads { field_match + }]

table_actions

[min_size : const_value ;]

[max_size : const_value ;]

[size : const_value ;]

[support_timeout : true | false ;]

}

field_match ::= field_or_masked_ref : field_match_type ;

field_or_masked_ref ::=

header_ref | header_ref "." valid | field_ref | field_ref mask const_value

54

11 TABLE DECLARATIONS

field_match_type ::= exact | ternary | lpm | range | valid

table_actions ::=

action_specification | action_profile_specification

action_specification ::=

actions { [action_name] + }

action_profile_specification ::=

action_profile : action_profile_name

This example is from the mTag edge switch program. It maps the packet’s L2 destination
to an mTag. If it fails to find a map, it may copy the packet to the CPU.

// Check if the packet needs an mtag and add one if it does.

table mTag_table {

reads {

ethernet.dst_addr : exact;

vlan.vid : exact;

}

actions {

add_mTag; // Action called if pkt needs an mtag.

common_copy_pkt_to_cpu; // If no mtag, send to the CPU

no_op;

}

max_size : 20000;

}

For an implementation of ECMP using an action profile with an action selector, please
see 15.8.3.

Match types have the following meanings.

• exact: The field value is matched against the table entry and the values must be
identical for the entry to be considered.

• ternary: A mask provided with each entry in the table. This mask is ANDed with
the field value before a comparison is made. The field value and the table entry
value need only agree on the bits set in the entry’s mask. Because of the possi-
bilities of overlapping matches, a priority must be associated with each entry in a
table using ternary matches.

• lpm: This is a special case of a ternary match. Each entry’s mask selects a prefix by
having a divide between 1s in the high order bits and 0s in the low order bits. The

55

11 TABLE DECLARATIONS

number of 1 bits gives the length of the prefix which is used as the priority of the
entry.

• range: Each entry specifies a low and high value for the entry and the field matches
only if it is in this range. Range end points are inclusive. Signedness of the field is
used in evaluating the order.

• valid: Only applicable to packet header fields or header instances (not metadata
fields), the table entry must specify a value of true (the field is valid) or false (the
field is not valid) as match criteria.

Tables are defined and applied with the following conventions:

• Header references for matching may only be used with the valid match type.

• Exactly one of the actions indicated in either the action_specification or the
action_profile_specification will be run when a table processes a packet.

– Entries are inserted at run time and each rule specifies the single action to
be run if that entry is matched.

– Actions in the list may be primitive actions or compound actions.

• At run time, the table entry insert operation (not part of P4) must specify:

– Values for each field specified in the reads entry.

– The name of the action from the action_specification or the action_-

profile_specification and the parameters to be passed to the action func-
tion when it is called.

• A default action is taken when no table entry matches. This action is specified at
run time. If no default action is specified and no entry matches, the table does not
affect the packet and processing continues according to the imperative control
flow.

• If reads is not present, the table will always execute the default action. If no de-
fault action has been specified, the table has no effect on the packet.

• The keyword mask may be used for a field to indicate that only the indicated bits
should be used in the match. This mask is applied once to the Parsed Representa-
tion’s field prior to any comparisons (compared to the per-entry mask which may
differ from entry to entry).

• The match type valid indicates that the field’s parent header (or, in the case of
metadata, the field itself) should be tested for validity. The value of 1 will match
when the header is valid; 0 will match when the header is not valid. Note that
metadata fields are always valid.

56

12 PACKET PROCESSING AND CONTROL FLOW

• The min_size attribute indicates the minimum number of entries required for the
table. If this cannot be supported, an error will be signaled when the declaration
is processed.

• The max_size attribute is an indication that the table is not expected to grow
larger than this size. If, at run time, the table has this many entries and another
insert operation applied, it may be rejected.

• The size attribute is equivalent to specifying min_size and max_size with the
same value.

• Although size and min_size are optional, failing to specify at least one of them
may result in the table being eliminated as the compiler attempts to satisfy the
other requirements of the program.

• The support_timeout attribute is used to enable ageing on a table. It is optional
and its default value is false.

A no-op primitive action, no_op, is defined in P4 in Section 9.1. It may be used to indi-
cate that a match should result in no change to the packet.

12 Packet Processing and Control Flow

A packet is processed by a sequence of match+action tables. At configuration time,
the control flow (in what order the tables are to be applied) may be expressed with an
imperative program. The imperative program may apply tables, call other control flow
functions or test conditions.

The execution of a table is indicated with the apply instruction. The apply instruction
itself can affect the control flow to which the packet is subject by specifying a set of
control blocks from which one is selected to be executed. The choice of which block is
selected may be determined by the action used on the packet or by whether a match
was found at all.

The apply instruction has three modes of operation.

• Sequential: Control flow moves to the next statement unconditionally.

• Action Selection: The action that was applied to the packet determines the block
of instructions to execute.

• Hit/Miss Check: Whether or not a match was found determines the block of in-
structions to execute.

Examples of each mode are given below, following the BNF. In conjunction with the
if-else statement, this provides the mechanism for expressing control flow.

57

12 PACKET PROCESSING AND CONTROL FLOW

control_function_declaration ::=

control control_fn_name control_block

control_block ::= { control_statement * }

control_statement ::=

apply_table_call |

apply_and_select_block |

if_else_statement |

control_fn_name () ;

apply_table_call ::= apply (table_name) ;

apply_and_select_block ::= apply (table_name) { [case_list] }

case_list ::= action_case + | hit_miss_case +

action_case ::= action_or_default control_block

action_or_default ::= action_name | default
hit_miss_case ::= hit_or_miss control_block

hit_or_miss ::= hit | miss

if_else_statement ::=

if (bool_expr) control_block

[else_block]

else_block ::= else control_block | else if_else_statement

bool_expr ::=

valid (header_ref) | bool_expr bool_op bool_expr |

not bool_expr | (bool_expr) | exp rel_op exp | true | false

exp ::=

exp bin_op exp | un_op exp | field_ref |

value | (exp)

bin_op ::= "+" | "*" | - | "<<" | ">>" | \& | "|" | ^

un_op ::= ~ | -

bool_op ::= or | and
rel_op ::= > | >= | == | <= | < | !=

In many cases, it is convenient to specify a sequence of fields. For example,

Operator precedence and associativity follows C programming conventions. As de-
scribed in Section 4.2, the parser returns the name of the control function to begin
match+action processing. When that function completes, the packet is passed to the

58

12 PACKET PROCESSING AND CONTROL FLOW

queuing mechanism (unless the packet is discarded). The function egress, if defined,
is called when a packet is dequeued. Then the packet is transmitted to a specific port
indicated by the egress_port field in the metadata.

Tables are invoked on the packet with the apply operator as described at the begin-
ning of this section. If the same table is invoked in multiple places from the control
flow, those invocations all refer to the same table instance; that is, there is only one set
of statistics, counters, meters, and match+action entries for the table. Targets may im-
pose limitations on these table invocations such as disallowing recursion, only allowing
tables to be referenced once, or only allowing control flow functions to be referenced
once.

The simplest control flow is to execute a sequence of tables with the applyoperator.

// The ingress control function

control ingress {

// Verify mTag state and port are consistent

apply(check_mtag);

apply(identify_port);

apply(select_output_port);

}

The apply operator can be used to control the instruction flow based on whether a
match was found in the table. This is done by specifying a block enclosed in braces
following the apply operation with hit and/or miss as the case selection labels. The
mTag edge program includes the following example:

apply(egress_meter) {

hit { // If egress meter table matched, apply policy

apply(meter_policy);

}

}

Alternatively, the apply operator can control the instruction flow based on the action
applied by the table to the packet. Here is an example.

apply(routing_table) {

ipv4_route_action { // IPv4 action was used

apply(v4_rpf);

apply(v4_acl);

}

ipv6_route_action { // IPv6 action was used

apply(v6_option_check);

59

13 EGRESS PORT SELECTION, REPLICATION AND QUEUING

apply(v6_acl);

}

default { // Some other action was used

if (standard_metadata.ingress_port == 1) {

apply(cpu_ingress_check);

}

}

}

Note that the two modes (match selection versus action selection) cannot be inter-
mixed. They are differentiated due to the fact that hit and miss are reserved words
and cannot be used as action function names.

13 Egress Port Selection, Replication and Queuing

In P4, the egress_spec metadata field is used to specify the destination or destinations
of a packet. In addition, for devices supporting priority queuing, egress_specmay indi-
cate the queue associated with each destination. An egress_spec value may represent
a physical port, a logical port (e.g., a tunnel, a LAG, a route, or a VLAN flood group), or
a multicast group.

P4 assumes that the Buffering Mechanism implements a function that maps egress_-
spec to a collection of packet instances represented as triples:

(packet, egress_port, egress_instance).

The Buffering Mechanism is responsible for generating each packet instances along
with these metadata fields and sending it as necessary to reach its egress port through
the egress match+action tables.

This mapping of egress_spec values to sets of packet instances is currently outside the
scope of P4; a forwarding element may statically map values to destinations or may
allow configuration of the map through a management interface. The run time table
programing interfaces must have access to this information to properly program the
tables declared in the P4 program.

The flow of packets through a forwarding element is as follows. Recall that, as depicted
in Figure 1, processing is divided between ingress and egress with the packet possibly
being buffered between the two. The parser normally terminates by indicating the con-
trol function used to begin processing. Upon completion of that control function, the
packet is submitted to the buffering system.

The buffers are assumed to be organized into one or more queues per egress port. The
details of queue structure and dequeuing disciplines is considered to be target specific,

60

14 RECIRCULATION AND CLONING

though targets may use P4 to expose configuration (and even to define actions resulting
from data plane events) related to queuing behavior.

A single copy of each packet traverses the Ingress Pipeline. At the completion of ingress
processing, the switch determines the queue(s) to place the packet in based upon the
egress_spec value. A packet that is sent to multiple destinations may be placed in mul-
tiple queues.

When the packet is dequeued, it is processed in the Egress Pipeline by the control func-
tion egress. A separate copy of the packet is sent through the Egress Pipeline for each
destination, requiring the Buffering Mechanism to replicate the packet. The physical
egress port is known at the time the packet is dequeued; this value is passed through the
Egress Pipeline as an immutable metadata field named egress_port. To support mul-
tiple copies of packets being sent to the same physical port (e.g., sending to multiple
VLANs on one port), the immutable metadata field egress_instance contains a unique
value for each copy. The semantics of egress_instance are target specific.

14 Recirculation and Cloning

Many standard networking functions, such as mirroring and recursive packet process-
ing, require more complicated primitives than setting or testing fields. To support such
operations, P4 provides primitive actions that allow a packet to be recirculated (sent
back to the start of the processing pipeline) or cloned (a second instance of the packet
is created).

Note that cloning is not intended to be the mechanism by which multicast is normally
implemented. That is expected to be done by the Buffering Mechanism in conjunction
with the egress specification. See Section 13.

Here is a table that summarizes the different operations. The first four (clone) op-
erations create an entirely new instance of the packet. The last two, resubmit and
recirculate, operate on the original packet and do not, by themselves, result in the
generation of a new packet.

Name Source Insertion Point
clone_ingress_pkt_to_ingress Original ingress pkt Ingress parser
clone_egress_pkt_to_ingress Post deparsed pkt Ingress parser
clone_ingress_pkt_to_egress Original ingress pkt Buffering Mechanism
clone_egress_pkt_to_egress Post deparsed pkt Buffering Mechanism
resubmit Original ingress pkt Ingress parser
recirculate Post deparsed pkt Ingress parser

Table 6: Clone and Recirculation Primitives

61

14.1 Clone 14 RECIRCULATION AND CLONING

14.1 Clone

The clone operations generate a new version of the packet. The original version con-
tinues to be processed as if the clone operation did not take place. We use the term
clone (rather than mirror) to emphasize that this action is only responsible for generat-
ing a new version of the packet. Mirroring requires additional configuration. The clone
mechanism may have additional applications.

The source of the clone may be the original instance of the packet (an ingress clone), or
the packet as it would exit the switch (an egress clone). The processing of the new in-
stance may be limited to the egress pipeline ("to egress") or it may start with the ingress
pipeline ("to ingress"). Hence we have four different clone operations.

For cloned packets, the instance_type metadata field is used to distinguish between
the original and cloned packet instances.

If multiple clone actions are executed on one packet, that many clone instances should
be generated. However, specific targets may impose limits on the number of clone in-
stances supported.

14.1.1 Clone to Ingress

Figure 3: Cloning to Ingress, from Ingress or Egress

62

14.1 Clone 14 RECIRCULATION AND CLONING

Figure 3 shows the paths for a cloned packet submitted to the ingress. The source may
be from the ingress itself, indicating that a copy of the original packet is given to the
parser, or from the egress, in which case a copy of the packet as it is transmitted is
created and submitted to the parser.

14.1.2 Clone to Egress

Figure 4: Cloning to Egress, from Ingress or Egress

Figure 4 shows the paths for a cloned packet submitted to the egress pipeline. The
source may be from the ingress, indicating that a copy of the original packet as parsed is
submitted to the Buffering Mechanism; or the source may be from the egress, in which
case a copy of the packet (and some of its Parsed Representation) just prior to deparsing
is created and submitted to the Buffering Mechanism.

Since the Buffering Mechanism requires an egress specification (metadata.egress_-
spec) to determine how to handle the packet, an egress specification should be asso-
ciated with the clone_spec associated with the instance by the primitive operation. In
fact, the clone_spec could simply be an egress_spec for some targets.

14.1.3 Mirroring

Mirroring, or port monitoring, is a standard networking function described, for exam-
ple, at http://en.wikipedia.org/wiki/Port_mirroring. In this section we describe

63

http://en.wikipedia.org/wiki/Port_mirroring

14.1 Clone 14 RECIRCULATION AND CLONING

one approach to implementing mirroring with P4.

Mirroring involves the following:

• Identifying the packets to be mirrored.

• Generating the mirrored instances of those packets

• Specifying what actions should be done on the mirrored instances

Normally, these functions are logically grouped together into a mirror session.

Assuming minimal additional target support (for example, a target might provide in-
trinsic metadata that would directly execute everything necessary for mirroring) a P4
program might include the following to support ingress mirroring of packets which are
selected based on a combination of ingress port, VLAN ID, L3 addresses and IP proto-
col.

In this example, the Buffering Mechanism is assumed to provide a programmable map
from the clone_spec parameter passed to clone_i2e to an egress_port number.

First, a table that matches on these characteristics would be declared. It would refer-
ence an action like the following:

action mirror_select(session) { // Select packets; map to session

modify_field(local_metadata.mirror_session, session);

clone_i2e(session, mirror_fld_list);

}

where

field_list mirror_field_list {

local_metadata.mirror_session;

}

indicates that the mirror session must be preserved in the cloned packet.

This action results in a new copy of the ingress packet to be submitted to the egress. The
run time APIs allow the specification of exactly which packets get mirrored. They also
have the flexibility to select the mirror session ID associated with each such packet. The
mirror_select table would be introduced into the control flow for the ingress pipeline,
probably early in processing.

A table matching on local_metadata.mirror_sessionwould be introduced in the egress
pipeline. Assume a value of 0 means "not mirrored", so the table could be applied to all
packets but only select the actions related to mirroring for those marked with a mirror
session. This table would exercise an action like:

64

14.2 Resubmit and Recirculate 14 RECIRCULATION AND CLONING

action mirror_execute(trunc_length) {

truncate(trunc_length);

}

For this example, the only action taken is the truncation of the mirrored packet. How-
ever the function could include the data used for an encapsulation header allowing
each mirror session to be sent to a different remote monitoring session. The encapsu-
lation header values would be programmed at run time.

Egress mirroring would follow a similar pattern with the primary difference being the
primitive action used would be clone_e2e.

14.2 Resubmit and Recirculate

Figure 5: Resubmit and Recirculate

Figure 5 shows the paths for resubmitting a packet to the parser for processing. The top
path shows a resubmit process. The resubmit action is signalled in the ingress pipeline.
Upon completing that pipeline, the original packet seen on ingress is resubmitted to
the parser along with additional metadata as specified by the action. The parser may
use the new metadata to make different parsing decisions than on the original pass
through the parser.

The lower path shows the path for recirculation. After the packet has completed both
ingress and egress processing, it is deparsed and sent back to the parser. The new packet

65

15 APPENDICES

is reparsed, possibly with metadata preserved from the original packet, and passed to
the ingress pipeline as usual.

For resubmit and recirculate, the instance_type metadata field distinguishes be-
tween first and later times the packet is being processed.

15 Appendices

15.1 Errata

• The syntax of action lists in table declarations is inconsistent. The specification
implies these are space-separated lists. Semicolon-separated lists would be con-
sistent.

• The syntax of counter references is inconsistent compared to meters. Meters use
bracket notation while counters use a separate parameter.

• The mechanism to refer to the output of a meter is over-specified. The output of
a meter (the metadata field into which the “color” returned by a meter is stored)
is allowed to be specified both in the declaration of the meter as well as when the
meter is invoked.

15.2 Programming Conventions (Incomplete)

The following is a list of conventions suggested for P4 programs.

• Parsing begins with the parser state function named start.

• Control flow begins with the control function ingress.

66

15.3 Revision History 15 APPENDICES

15.3 Revision History

Release Release Date Summary of Changes
1.0.0-rc1 2014-09-08 First public version.
1.0.0-rc2 2014-09-09 Minor typos.
1.0.0-rc3 2014-12-30 Fixed some missing tildes (negations). Drop in

parser is now parser_drop. Added add primitive ac-
tion. Added errata section.

1.0.1 2015-01-28 Added action profiles and action selectors. Added
attribute support_timeout to tables.

1.0.2 2015-03-03 Added push and pop primitive actions.
1.0.3 2016-11-3 See 15.3.3 for details.
1.0.4 2017-05-24 See 15.3.2 for details.
1.0.5 2018-05-31 See 15.3.1 for details.

Table 7: Revision History

15.3.1 Summary of changes introduced in 1.0.5

• Header Stacks (Section 2.2.2)

– Modify semantics of header stacks for compatibility with the P416 language
specification and known existing implementations.

15.3.2 Summary of changes introduced in 1.0.4

• Primitive Actions (Section 9.1)

– Modify semantics of primitive actions so that accessing an invalid header
produces an undefined value and invalid headers are omitted from field list
calculations.

• Parallel and Sequntial Semantics (Section 9.2.1)

– Change action semantics from parallel to sequential, to match current im-
plementations (e.g., bmv2).

• Testing Validity (Section 2.2.1)

– Change semantics so that an invalid header has an undefined value when
used for matching in a table.

• Table Declarations (Section 11)

– Added a pseudo-field hdr.valid that can be matched against in a table.

67

15.3 Revision History 15 APPENDICES

15.3.3 Summary of changes introduced in 1.0.3

• Counters and meters (Sections 7.1 and 7.2)

– A new counter type packets_and_bytes.

– An example of meter output/color encoding.

– execute_meter() replaces meter(), avoiding ambiguity in parsing (Section
9.1).

• Register layout and access methodology (Sections 7.3 and 9.1)

– Register layout deprecated.

– New primitive actions register_read and register_write replace bracket-
based access method.

• Declaring target-specific primitive actions (Section 9.1)

– Additional primitive actions cannot be declared in P4 anymore. The lack
of strong typing and access qualifiers (in / out) made this feature virtually
useless.

• New primitive actions (Section 9.1)

– subtract() and subtract_from_field() arithmetic operators

– bit_and(), bit_or() and bit_xor() bitwise logical operators

– shift_left() and shift_right() bit-shifters

– modify_field_rng_uniform() random number generator

• Miscallenous

– modify_field_with_hash_based_offset() replaces set_field_to_hash_index
primitive action (Section 9.1).

– All the parameters of push, pop, resubmit, recirculate, clone_* prim-
itive actions are mandatory.

– field_list parameter of clone_* primitive actions can specify only meta-
data fields not header fields.

– Empty action bodies are allowed in action_function_declaration (Section
9.2).

– A list of intrinsic metadata supported by the BMv2 reference target [3] is
linked in Section 6.

68

15.4 Terminology (Incomplete) 15 APPENDICES

15.4 Terminology (Incomplete)

Term Definition
Control Flow The logic that selects which tables are applied to a packet

when it is processed by a pipeline. Used to resolve order de-
pendencies.

Egress Queuing An abstract P4 functional block logically separating ingress
and egress processing. Implementations may expose queu-
ing and buffer resource management interfaces for this
block, but this not specified by P4.

Egress Specification Metadata set by the ingress pipeline which determines the set
of destination ports (and number of instances on each port)
to which the packet should be sent

Order Dependency A sequence of match and action operations whose result de-
pends on the order of execution. For example, one table may
set a field which another table uses for a match. The control
flow is used to determine which of the possible effects is in-
tended.

Parsed Representation A representation of a packet’s header as a set of header in-
stances, each of which is composed of fields.

Parser A functional block which maps a packet to a Parsed Repre-
sentation

Pipeline A sequence of match+action tables. run time When a switch
is processing packets. This is distinguished from configure
time, though these operations may occur at the same time in
some implementations.

Table 8: Terminology

15.5 Summary of P4 BNF

p4_program ::= p4_declaration +

p4_declaration ::=

header_type_declaration |

instance_declaration |

field_list_declaration |

field_list_calculation_declaration |

calculated_field_declaration |

value_set_declaration |

parser_function_declaration |

parser_exception_declaration |

69

15.5 Summary of P4 BNF 15 APPENDICES

counter_declaration |

meter_declaration |

register_declaration |

action_function_declaration |

action_profile_declaration |

action_selector_declaration |

table_declaration |

control_function_declaration

const_value ::= ["+" | -] [width_spec] unsigned_value

unsigned_value ::= binary_value | decimal_value | hexadecimal_value

binary_value ::= binary_base binary_digit+

decimal_value ::= decimal_digit+

hexadecimal_value ::= hexadecimal_base hexadecimal_digit+

binary_base ::= 0b | 0B
hexadecimal_base ::= 0x | 0X

binary_digit ::= _ | 0 | 1
decimal_digit ::= binary_digit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
hexadecimal_digit ::=

decimal_digit | a | A | b | B | c | C | d | D | e | E | f | F

width_spec ::= decimal_digit+ ’
field_value ::= const_value

header_type_declaration ::=

header_type header_type_name { header_dec_body }

header_dec_body ::=

fields { field_dec + }

[length : length_exp ;]

[max_length : const_value ;]

field_dec ::= field_name : bit_width [(field_mod)];

field_mod ::= signed | saturating | field_mod , field_mod

length_bin_op ::= "+" | - | "*" | "<<" | ">>"
length_exp ::=

const_value |

field_name |

length_exp length_bin_op length_exp |

(length_exp)

70

15.5 Summary of P4 BNF 15 APPENDICES

bit_width ::= const_value | "*"
instance_declaration ::= header_instance | metadata_instance

header_instance ::= scalar_instance | array_instance

scalar_instance ::= header header_type_name instance_name ;

array_instance ::=

header header_type_name

instance_name "[" const_value "]" ;

metadata_instance ::=

metadata header_type_name

instance_name [metadata_initializer] | ;

metadata_initializer ::= { [field_name : field_value ;] + }

header_ref ::= instance_name | instance_name "[" index "]"
index ::= const_value | last
field_ref ::= header_ref . field_name

field_list_declaration ::=

field_list field_list_name {

[field_list_entry ;] +

}

field_list_entry ::=

field_ref | header_ref | field_value | field_list_name | payload
field_list_calculation_declaration ::=

field_list_calculation field_list_calculation_name {

input {

[field_list_name ;] +

}

algorithm : stream_function_algorithm_name ;

output_width : const_value ;

}

calculated_field_declaration ::=

calculated_field field_ref { update_verify_spec + }

update_verify_spec ::=

update_or_verify field_list_calculation_name [if_cond] ;

update_or_verify ::= update | verify
if_cond ::= if (calc_bool_cond)

calc_bool_cond ::=

valid (header_ref | field_ref) |

71

15.5 Summary of P4 BNF 15 APPENDICES

field_ref == field_value

value_set_declaration ::= parser_value_set value_set_name;

parser_function_declaration ::=

parser parser_state_name { parser_function_body }

parser_function_body ::=

extract_or_set_statement*
return_statement

extract_or_set_statement ::= extract_statement | set_statement

extract_statement ::= extract (header_extract_ref);

header_extract_ref ::=

instance_name |

instance_name "[" header_extract_index "]"

header_extract_index ::= const_value | next

set_statement ::= set_metadata (field_ref, metadata_expr) ;

metadata_expr ::= field_value | field_or_data_ref

return_statement ::=

return_value_type |

return select (select_exp) { case_entry + }

return_value_type ::=

return parser_state_name ; |

return control_function_name ; |

parse_error parser_exception_name ;

case_entry ::= value_list : case_return_value_type ;

value_list ::= value_or_masked [, value_or_masked]* | default

case_return_value_type ::=

parser_state_name |

control_function_name |

parse_error parser_exception_name

value_or_masked ::=

field_value | field_value mask field_value | value_set_name

select_exp ::= field_or_data_ref [, field_or_data_ref] *
field_or_data_ref ::=

72

15.5 Summary of P4 BNF 15 APPENDICES

field_ref |

latest.field_name |

current(const_value , const_value)

parser_exception_declaration ::=

parser_exception parser_exception_name {

set_statement *
return_or_drop ;

}

return_or_drop ::= return_to_control | parser_drop
return_to_control ::= return control_function_name

counter_declaration ::=

counter counter_name {

type : counter_type ;

[direct_or_static ;]

[instance_count : const_expr ;]

[min_width : const_expr ;]

[saturating ;]

}

counter_type ::= bytes | packets | packets_and_bytes
direct_or_static ::= direct_attribute | static_attribute

direct_attribute ::= direct : table_name

static_attribute ::= static : table_name

meter_declaration ::=

meter meter_name {

type : meter_type ;

[result : field_ref ;]

[direct_or_static ;]

[instance_count : const_expr ;]

}

meter_type ::= bytes | packets
register_declaration ::=

register register_name {

width_declaration ;

[direct_or_static ;]

[instance_count : const_value ;]

[attribute_list ;]

}

width_declaration ::= width : const_value ;

73

15.5 Summary of P4 BNF 15 APPENDICES

attribute_list ::= attributes : attr_entry

attr_entry ::= signed | saturating | attr_entry , attr_entry

action_function_declaration ::=

action action_header { action_statement * }

action_header ::= action_name "(" [param_list] ")"

param_list ::= param_name [, param_name]*
action_statement ::= action_name "(" [arg [, arg]*] ")" ;

arg ::= param_name | field_value | field_ref | header_ref

action_profile_declaration ::=

action_profile action_profile_name {

action_specification

[size : const_value ;]

[dynamic_action_selection : selector_name ;]

}

action_specification ::=

actions { [action_name] + }

action_selector_declaration ::=

action_selector selector_name {

selection_key : field_list_calculation_name ;

}

table_declaration ::=

table table_name {

[reads { field_match + }]

table_actions

[min_size : const_value ;]

[max_size : const_value ;]

[size : const_value ;]

[support_timeout : true | false ;]

}

field_match ::= field_or_masked_ref : field_match_type ;

field_or_masked_ref ::=

header_ref | header_ref "." valid | field_ref | field_ref mask const_value

field_match_type ::= exact | ternary | lpm | range | valid

74

15.5 Summary of P4 BNF 15 APPENDICES

table_actions ::=

action_specification | action_profile_specification

action_specification ::=

actions { [action_name] + }

action_profile_specification ::=

action_profile : action_profile_name

control_function_declaration ::=

control control_fn_name control_block

control_block ::= { control_statement * }

control_statement ::=

apply_table_call |

apply_and_select_block |

if_else_statement |

control_fn_name () ;

apply_table_call ::= apply (table_name) ;

apply_and_select_block ::= apply (table_name) { [case_list] }

case_list ::= action_case + | hit_miss_case +

action_case ::= action_or_default control_block

action_or_default ::= action_name | default
hit_miss_case ::= hit_or_miss control_block

hit_or_miss ::= hit | miss

if_else_statement ::=

if (bool_expr) control_block

[else_block]

else_block ::= else control_block | else if_else_statement

bool_expr ::=

valid (header_ref) | bool_expr bool_op bool_expr |

not bool_expr | (bool_expr) | exp rel_op exp | true | false

exp ::=

exp bin_op exp | un_op exp | field_ref |

value | (exp)

bin_op ::= "+" | "*" | - | "<<" | ">>" | \& | "|" | ^

75

15.6 P4 Reserved Words 15 APPENDICES

un_op ::= ~ | -

bool_op ::= or | and
rel_op ::= > | >= | == | <= | < | !=

15.6 P4 Reserved Words

The following are reserved words in P4 and should not be used as identifiers.2

apply

current

default

else

hit

if

last

latest

parse_error

payload

select

switch

15.7 Field Value Conversions

As mentioned in Section 1.5.1, values may need to be converted when used in an ex-
pression or assigned to a field instance. The conversion will depend the the source and
destination widths and signedness, and whether the destination is saturating.

A value is signed if (1) it has an explicit minus ("-") preceding its representation; or
(2) it is a field instance with the signed attribute in its declaration. Otherwise it is un-
signed.

The rules for conversion are as follows:

• If the source and destinations have the same width, the binary value of the source
is used, but the interpretation may change if the signedness is different.

– Example: source is unsigned, 7 bits with a value of 127 and the dest is signed,
7 bits, the result will be interpreted as -1.

• If the source width is less than the destination width, the source is extended based
on its own signedness.

– Example: Source is signed, 7’b1111111 and dest is 8 bits; the result is 8’b11111111.

2There is an open issue whether all P4 keywords will in fact be reserved.

76

15.8 Examples 15 APPENDICES

– Example: Source is unsigned 4’b1100 and dest is 8 bits; the result is 8’b00001100.

• If the source width is greater than the destination width, the result depends on
whether the destination is saturating. The effect should be the same as adding
the value represented by the source to the destination when the destination is 0.

– Example: Source is signed, and negative, destination is saturating. the result
is 0.

– Example: Source is unsigned, has value 17 and the destination is 4 bits, un-
signed and saturating; the result is 15 as that is the saturated value of the
destination.

– Example: As above, but the destination is not saturating; the result is 1 as
the destination would wrap above 15. This is equivalent to truncating the
source.

For expressions, the value with largest bit width is identified and all other values are
converted to this width according to their own signedness. The expression is then eval-
uated and the result is converted as necessary according to its use.

15.8 Examples

15.8.1 The Annotated mTag Example

This section presents the mTag example. The example describes two separate P4 pro-
grams, mtag-edge and mtag-aggregation, as described in the introduction in Section 1.2.

The code is written in P4 whose syntax allows the application of a C preprocessor to P4
files. Thus directives such as #define and #include are used in the program with the
same effects as if writing C code. This is a convention used by these examples; the P4
language does not mandate this syntax.

The example code is split into the following files

• headers.p4: The declaration of all header types used in both programs.

• parser.p4: The parser program shared by both programs.

• actions.p4: Common actions used by both programs.

• mtag-edge.p4: The main program for the edge switch

• mtag-aggregation.p4: The main program for any aggregation switch

The full source for all files is provided on the P4 website [2].

We start with header.p4.

77

15.8 Examples 15 APPENDICES

//

// Header type definitions

//

// Standard L2 Ethernet header

header_type ethernet_t {

fields {

dst_addr : 48; // width in bits

src_addr : 48;

ethertype : 16;

}

}

// Standard VLAN tag

header_type vlan_t {

fields {

pcp : 3;

cfi : 1;

vid : 12;

ethertype : 16;

}

}

// The special m-tag used to control forwarding through the

// aggregation layer of the data center

header_type mTag_t {

fields {

up1 : 8; // From edge to agg

up2 : 8; // Up from lower agg to upper agg

down1 : 8; // Down from upper agg to lower agg

down2 : 8; // Back to edge from agg

ethertype : 16; // Ethertype of encapped packet

}

}

// Standard IPv4 header

header_type ipv4_t {

fields {

version : 4;

ihl : 4;

diffserv : 8;

78

15.8 Examples 15 APPENDICES

totalLen : 16;

identification : 16;

flags : 3;

fragOffset : 13;

ttl : 8;

protocol : 8;

hdrChecksum : 16;

srcAddr : 32;

dstAddr : 32;

options : *; // Variable length options

}

length : ihl * 4;

max_length : 60;

}

// Assume standard metadata from compiler.

// Define local metadata here.

//

// copy_to_cpu is an example of target specific intrinsic metadata

// It has special significance to the target resulting in a

// copy of the packet being forwarded to the management CPU.

header_type local_metadata_t {

fields {

cpu_code : 16; // Code for packet going to CPU

port_type : 4; // Type of port: up, down, local...

ingress_error : 1; // An error in ingress port check

was_mtagged : 1; // Track if pkt was mtagged on ingr

copy_to_cpu : 1; // Special code resulting in copy to CPU

bad_packet : 1; // Other error indication

color : 8; // For metering

}

}

The parser function shared by the programs is as follows.

//

// Parser functions and related definitions

//

//

79

15.8 Examples 15 APPENDICES

// Header instance definitions

//

// Header instances are usually defined with the parser as

// that is where they are initialized.

//

//

header ethernet_t ethernet;

header vlan_t vlan;

header mTag_t mtag;

header ipv4_t ipv4;

// Local metadata instance declaration

metadata local_metadata_t local_metadata;

//

// Parser state machine description

//

// Start with ethernet always.

parser start {

return ethernet;

}

parser ethernet {

extract(ethernet); // Start with the ethernet header

return select(latest.ethertype) {

0x8100: vlan;

0x800: ipv4;

default: ingress;

}

}

// Extract the VLAN tag and check for an mTag

parser vlan {

extract(vlan);

return select(latest.ethertype) {

0xaaaa: mtag;

0x800: ipv4;

default: ingress;

}

}

80

15.8 Examples 15 APPENDICES

// mTag is allowed after a VLAN tag only (see above)

parser mtag {

extract(mtag);

return select(latest.ethertype) {

0x800: ipv4;

default: ingress;

}

}

parser ipv4 {

extract(ipv4);

return ingress; // All done with parsing; start matching

}

Here are the common actions for the two programs.

//

//

// actions.p4

//

// This file defines the common actions that can be exercised by

// either an edge or an aggregation switch.

//

//

//

// Actions used by tables

//

// Copy the packet to the CPU;

action common_copy_pkt_to_cpu(cpu_code, bad_packet) {

modify_field(local_metadata.copy_to_cpu, 1);

modify_field(local_metadata.cpu_code, cpu_code);

modify_field(local_metadata.bad_packet, bad_packet);

}

// Drop the packet; optionally send to CPU and mark bad

action common_drop_pkt(do_copy, cpu_code, bad_packet) {

modify_field(local_metadata.copy_to_cpu, do_copy);

modify_field(local_metadata.cpu_code, cpu_code);

modify_field(local_metadata.bad_packet, bad_packet);

81

15.8 Examples 15 APPENDICES

drop();

}

// Set the port type; see run time mtag_port_type.

// Allow error indication.

action common_set_port_type(port_type, ingress_error) {

modify_field(local_metadata.port_type, port_type);

modify_field(local_metadata.ingress_error, ingress_error);

}

Here are excerpts from the edge program.

//

//

// mtag-edge.p4

//

// This file defines the behavior of the edge switch in an mTag

// example.

//

//

//

// Include the header definitions and parser

// (with header instances)

#include "headers.p4"

#include "parser.p4"

#include "actions.p4" // For actions marked "common_"

#define PORT_COUNT 64 // Total ports in the switch

//

// Table definitions

//

// Remove the mtag for local processing/switching

action _strip_mtag() {

// Strip the tag from the packet...

remove_header(mtag);

// but keep state that it was mtagged.

modify_field(local_metadata.was_mtagged, 1);

}

82

15.8 Examples 15 APPENDICES

// Always strip the mtag if present on the edge switch

table strip_mtag {

reads {

mtag : valid; // Was mtag parsed?

}

actions {

_strip_mtag; // Strip mtag and record metadata

no_op; // Pass thru otherwise

}

}

//

// Identify ingress port: local, up1, up2, down1, down2

table identify_port {

reads {

standard_metadata.ingress_port : exact;

}

actions { // Each table entry specifies *one* action

common_set_port_type;

common_drop_pkt; // If unknown port

no_op; // Allow packet to continue

}

max_size : 64; // One rule per port

}

. . . // Removed code related to local switching

// Add an mTag to the packet; select egress spec based on up1

action add_mTag(up1, up2, down1, down2) {

add_header(mtag);

// Copy VLAN ethertype to mTag

modify_field(mtag.ethertype, vlan.ethertype);

// Set VLAN’s ethertype to signal mTag

modify_field(vlan.ethertype, 0xaaaa);

// Add the tag source routing information

modify_field(mtag.up1, up1);

modify_field(mtag.up2, up2);

modify_field(mtag.down1, down1);

modify_field(mtag.down2, down2);

83

15.8 Examples 15 APPENDICES

// Set the destination egress port as well from the tag info

modify_field(standard_metadata.egress_spec, up1);

}

// Count packets and bytes by mtag instance added

counter pkts_by_dest {

type : packets;

direct : mTag_table;

}

counter bytes_by_dest {

type : bytes;

direct : mTag_table;

}

// Check if the packet needs an mtag and add one if it does.

table mTag_table {

reads {

ethernet.dst_addr : exact;

vlan.vid : exact;

}

actions {

add_mTag; // Action called if pkt needs an mtag.

// Option: If no mtag setup, forward to the CPU

common_copy_pkt_to_cpu;

no_op;

}

max_size : 20000;

}

// Packets from agg layer must stay local; enforce that here

table egress_check {

reads {

standard_metadata.ingress_port : exact;

local_metadata.was_mtagged : exact;

}

actions {

common_drop_pkt;

no_op;

}

84

15.8 Examples 15 APPENDICES

max_size : PORT_COUNT; // At most one rule per port

}

// Egress metering; this could be direct, but we let SW

// use whatever mapping it might like to associate the

// meter cell with the source/dest pair

meter per_dest_by_source {

type : bytes;

result : local_metadata.color;

instance_count : PORT_COUNT * PORT_COUNT; // Per source/dest pair

}

action meter_pkt(meter_idx) {

execute_meter(per_dest_by_source, meter_idx, local_metadata.color);

}

// Mark packet color, for uplink ports only

table egress_meter {

reads {

standard_metadata.ingress_port : exact;

mtag.up1 : exact;

}

actions {

meter_pkt;

no_op;

}

size : PORT_COUNT * PORT_COUNT; // Could be smaller

}

// Apply meter policy

counter per_color_drops {

type : packets;

direct : meter_policy;

}

table meter_policy {

reads {

metadata.ingress_port : exact;

local_metadata.color : exact;

}

actions {

drop; // Automatically counted by direct counter above

85

15.8 Examples 15 APPENDICES

no_op;

}

size : 4 * PORT_COUNT;

}

//

// Control function definitions

//

// The ingress control function

control ingress {

// Always strip mtag if present, save state

apply(strip_mtag);

// Identify the source port type

apply(identify_port);

// If no error from source_check, continue

if (local_metadata.ingress_error == 0) {

// Attempt to switch to end hosts

apply(local_switching); // not shown; matches on dest addr

// If not locally switched, try to setup mtag

if (standard_metadata.egress_spec == 0) {

apply(mTag_table);

}

}

}

// The egress control function

control egress {

// Check for unknown egress state or bad retagging with mTag.

apply(egress_check);

// Apply egress_meter table; if hit, apply meter policy

apply(egress_meter) {

hit {

apply(meter_policy);

}

}

86

15.8 Examples 15 APPENDICES

}

The key table for mtag-aggregation is shown below.

//

//

// mtag-aggregation.p4

//

//

// Include the header definitions and parser (with header instances)

#include "headers.p4"

#include "parser.p4"

#include "actions.p4" // For actions marked "common_"

//

// check_mtag table:

// Make sure pkt has mtag; Apply drop or to-cpu policy if not

//

table check_mtag { // Statically programmed w/ one entry

. . . // Reads if mtag valid; drop or copy to CPU

}

//

// identify_port table:

// Check if up or down facing port as programmed at run time.

//

table identify_port {

. . . // Read ingress_port; call common_set_port_type.

}

//

// Actions to copy the proper field from mtag into the egress spec

action use_mtag_up1() { // This is actually never used on agg switches

modify_field(standard_metadata.egress_spec, mtag.up1);

}

action use_mtag_up2() {

modify_field(standard_metadata.egress_spec, mtag.up2);

}

87

15.8 Examples 15 APPENDICES

action use_mtag_down1() {

modify_field(standard_metadata.egress_spec, mtag.down1);

}

action use_mtag_down2() {

modify_field(standard_metadata.egress_spec, mtag.down2);

}

// Table to select output spec from mtag

table select_output_port {

reads {

local_metadata.port_type : exact; // Up, down, level 1 or 2.

}

actions {

use_mtag_up1;

use_mtag_up2;

use_mtag_down1;

use_mtag_down2;

// If port type is not recognized, previous policy applied

no_op;

}

max_size : 4; // Only need one entry per port type

}

//

// Control function definitions

//

// The ingress control function

control ingress {

// Verify mTag state and port are consistent

apply(check_mtag);

apply(identify_port);

apply(select_output_port);

}

// No egress function used in the mtag-agg example.

The following is an example header file that might be used with the mtag example
above. This shows the following:

• Type definitions for port types (mtag_port_type_t) meter levels
(mtag_meter_levels_t) and a table entry handle (entry_handle_t).

88

15.8 Examples 15 APPENDICES

• An example function to add an entry to the identify_port table,
table_identify_port_add_with_set_port_type. The action to use with the en-
try is indicated at the end of the function name: set_port_type.

• Functions to set the default action for the identify_port table:
table_indentify_port_default_common_drop_pkt and
table_indentify_port_default_common_set_port_type.

• A function to add an entry to the mTag table:
table_mTag_table_add_with_add_mTag

• A function to get a counter associated with the meter table:
counter_per_color_drops_get.

/**

* Run time header file example for CCR mTag example

*/

#ifndef MTAG_RUN_TIME_H

#define MTAG_RUN_TIME_H

/**

* @brief Port types required for the mtag example

*

* Indicates the port types for both edge and aggregation

* switches.

*/

typedef enum mtag_port_type_e {

MTAG_PORT_UNKNOWN, /* Uninitialized port type */

MTAG_PORT_LOCAL, /* Locally switch port for edge */

MTAG_PORT_EDGE_TO_AG1, /* Up1: edge to agg layer 1 */

MTAG_PORT_AG1_TO_AG2, /* Up2: Agg layer 1 to agg layer 2 */

MTAG_PORT_AG2_TO_AG1, /* Down2: Agg layer 2 to agg layer 1 */

MTAG_PORT_AG1_TO_EDGE, /* Down1: Agg layer 1 to edge */

MTAG_PORT_ILLEGAL, /* Illegal value */

MTAG_PORT_COUNT

} mtag_port_type_t;

/**

* @brief Colors for metering

*

* The edge switch supports metering from local ports up to the

89

15.8 Examples 15 APPENDICES

* aggregation layer.

*/

typedef enum mtag_meter_levels_e {

MTAG_METER_COLOR_GREEN, /* No congestion indicated */

MTAG_METER_COLOR_YELLOW, /* Above low water mark */

MTAG_METER_COLOR_RED, /* Above high water mark */

MTAG_METER_COUNT

} mtag_meter_levels_t;

typedef uint32_t entry_handle_t;

/* mTag table */

/**

* @brief Add an entry to the edge identify port table

* @param ingress_port The port number being identified

* @param port_type The port type associated with the port

* @param ingress_error The value to use for the error indication

*/

entry_handle_t table_identify_port_add_with_set_port_type(

uint32_t ingress_port,

mtag_port_type_t port_type,

uint8_t ingress_error);

/**

* @brief Set the default action of the identify port

* table to send the packet to the CPU.

* @param do_copy Set to 1 if should send copy to the CPU

* @param cpu_code If do_copy, this is the code used

* @param bad_packet Set to 1 to flag packet as bad

*

* This allows the programmer to say: If port type is not

* set, this is an error; let me see the packet.

*

* Also allows just a drop of the packet.

*/

int table_indentify_port_default_common_drop_pkt(

uint8_t do_copy,

uint16_t cpu_code,

90

15.8 Examples 15 APPENDICES

uint8_t bad_packet);

/**

* @brief Set the default action of the identify port

* table to set to the given value

* @param port_type The port type associated with the port

* @param ingress_error The value to use for the error indication

*

* This allows the programmer to say "default port type is local"

*/

int table_indentify_port_default_common_set_port_type(

mtag_port_type_t port_type,

uint8_t ingress_error);

/**

* @brief Add an entry to the add mtag table

* @param dst_addr The L2 destination MAC for matching

* @param vid The VLAN ID used for matching

* @param up1 The up1 value to use in the mTag

* @param up2 The up2 value to use in the mTag

* @param down1 The down1 value to use in the mTag

* @param down2 The down2 value to use in the mTag

*/

entry_handle_t table_mTag_table_add_with_add_mTag(

mac_addr_t dst_addr, uint16_t vid,

uint8_t up1, uint8_t up2, uint8_t down1, uint8_t down2);

/**

* @brief Get the number of drops by ingress port and color

* @param ingress_port The ingress port being queried.

* @param color The color being queried.

* @param count (output) The current value of the parameter.

* @returns 0 on success.

*/

int counter_per_color_drops_get(

uint32_t ingress_port,

mtag_meter_levels_t color,

uint64_t *count);

#endif /* MTAG_RUN_TIME_H */

91

15.8 Examples 15 APPENDICES

15.8.2 Adding Hysteresis to mTag Metering with Registers

In the previous section, the mtag-edge switch used metering between local ports and
the aggregation layer. Suppose that network simulation indicated a benefit if hysteresis
could be used with the meters. That is, once the meter was red, packets are discarded
until the meter returned to green (not just to yellow). This can be achieved by adding a
register set parallel to the meters. Each cell in the register set holds the "previous" color
of the meter.

Here are the changes to support this feature. The meter index is stored in local metadata
for convenience.

//

//

// headers.p4: Add the meter index to the local metadata.

//

//

header_type local_metadata_t {

fields {

cpu_code : 16; // Code for packet going to CPU

port_type : 4; // Type of port: up, down, local...

ingress_error : 1; // An error in ingress port check

was_mtagged : 1; // Track if pkt was mtagged on ingr

copy_to_cpu : 1; // Special code resulting in copy to CPU

bad_packet : 1; // Other error indication

color : 8; // For metering

prev_color : 8; // For metering hysteresis

meter_idx : 16; // Index used for metering

}

}

//

// mtag-edge.p4: Declare registers and add table to update them

//

// The register stores the "previous" state of the color.

// Index is the same as that used by the meter.

register prev_color {

width : 8;

// paired w/ meters above

instance_count : PORT_COUNT * PORT_COUNT;

92

15.8 Examples 15 APPENDICES

}

// Action: Update the color saved in the register

action update_prev_color(new_color) {

register_write(prev_color, local_metadata.meter_idx, new_color);

}

// Action: Override packet color with that from the parameter

action mark_pkt(color) {

modify_field(local_metadata.color, color);

}

// Update meter packet action to save data

action meter_pkt(meter_idx) {

// Save index and previous color in packet metadata

modify_field(local_metadata.meter_idx, meter_idx);

register_read(local_metadata.prev_color, prev_color, meter_idx);

execute_meter(per_dest_by_source, meter_idx, local_metadata.color);

}

//

// This table is statically populated with the following rules:

// color: green, prev_color: red ==> update_prev_color(green)

// color: red, prev_color: green ==> update_prev_color(red)

// color: yellow, prev_color: red ==> mark_pkt(red)

// Otherwise, no-op.

//

table hysteresis_check {

reads {

local_metadata.color : exact;

local_metadata.prev_color : exact;

}

actions {

update_prev_color;

mark_pkt;

no_op;

}

size : 4;

}

//

93

15.8 Examples 15 APPENDICES

// In the egress control function, check for hysteresis

//

control egress {

// Check for unknown egress state or bad retagging with mTag.

apply(egress_check);

apply(egress_meter) {

hit {

apply(hysteresis_check);

apply(meter_policy);

}

}

}

15.8.3 ECMP Selection Example

This example shows how ECMP can be implemented using an action profile with action
selector.

table ipv4_routing {

reads {

ipv4.dstAddr: lpm;

}

action_profile : ecmp_action_profile;

size : 16384; // 16K possible IPv4 prefixes

}

action_profile ecmp_action_profile {

actions {

nhop_set;

no_op;

}

size : 4096; // 4K possible next hops

dynamic_action_selection : ecmp_selector;

}

// list of fields used to determine the ECMP next hop

field_list l3_hash_fields {

ipv4.srcAddr;

ipv4.dstAddr;

ipv4.protocol;

94

15.9 Feature Proposals for Future Versions 15 APPENDICES

ipv4.protocol;

tcp.sport;

tcp.dport;

}

field_list_calculation ecmp_hash {

input {

l3_hash_fields;

}

algorithm : crc16;

output_width : 16;

}

action_selector ecmp_selector {

selection_key : ecmp_hash;

}

15.9 Feature Proposals for Future Versions

P4 is expected to evolve and develop as its features are exercised and issues are found.
Incremental improvements will be released with minor version number updates. This
section lists features under consideration for coming P4 versions.

95

15.10 References 15 APPENDICES

Title Summary
Support Assignment Operators Allow fields and headers to be manipulated with as-

signment operators such as = or +=.
Support typing Support data and object typing.
Better Encapsulation Support Support better action primitives and parsing func-

tionality for encapsulation applications.
Run Time Reconfiguration Consider language features and conventions that

would better enable consistent run time reconfig-
urability.

Field and Header Aliasing Support a mechanism allowing references to dif-
ferent field or header instances via indirection (an
alias) to allow the application of policy across multi-
ple packet formats simultaneously.

Flexible feature inclusion Add facilities allowing compile or run time selection
of features based on availability.

Debugging Features Support better debuggability with the addition of
features such as object introspection, variable log-
ging levels and event triggering.

Indirect Table Matching Support database-like tables which can be queried
multiple times by match+action.

Parser Repeat Loops Support a loop construct in the parser to support
variable length headers, header option lists, TLVs,
etc.

Parser Select+Extract Extend the select operator to be used in conjunction
with the extract operator allowing the selection of
the header instance to be extracted.

Table 9: Feature Proposals

15.10 References

[1] Bosshart, et al. P4: Programming Protocol-Independent Packet Processors. Computer
Communication Review, July 2014. http://www.sigcomm.org/ccr/papers/2014/July/
0000000.0000004.

[2] The P4 Language Consortium web site. http://www.p4.org.

[3] The BMv2 Simple Switch target. https://github.com/p4lang/behavioral-model/

blob/master/docs/simple_switch.md.

96

http://www.sigcomm.org/ccr/papers/2014/July/0000000.0000004
http://www.sigcomm.org/ccr/papers/2014/July/0000000.0000004
http://www.p4.org
https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md

	Introduction
	The P4 Abstract Model
	The mTag Example
	P4 Abstractions
	Structure of the P4 Language
	Specification Conventions
	Value Specifications

	Headers and Fields
	Header Type Declarations
	Header and Metadata Instances
	Testing if Header and Metadata Instances are Valid
	Header Stacks

	Header and Field References
	Field Lists

	Checksums and Hash-value generators
	Checksums

	Parser Specification
	Parsed Representation
	Parser Operation
	Value Sets
	Parser Function BNF
	The extract Function
	Parser Exceptions
	Standard Parser Exceptions
	Default Exception Handling

	Deparsing
	Standard Intrinsic Metadata
	Counters, Meters and Registers
	Counters
	Meters
	Registers

	Match+Action Table Overview
	Actions
	Primitive Actions
	Field Assignment and Saturation Attributes
	Parameter Binding

	Action Definitions
	Parallel and Sequential Semantics

	Action profile declarations
	Table Declarations
	Packet Processing and Control Flow
	Egress Port Selection, Replication and Queuing
	Recirculation and Cloning
	Clone
	Clone to Ingress
	Clone to Egress
	Mirroring

	Resubmit and Recirculate

	Appendices
	Errata
	Programming Conventions (Incomplete)
	Revision History
	Summary of changes introduced in 1.0.5
	Summary of changes introduced in 1.0.4
	Summary of changes introduced in 1.0.3

	Terminology (Incomplete)
	Summary of P4 BNF
	P4 Reserved Words
	Field Value Conversions
	Examples
	The Annotated mTag Example
	Adding Hysteresis to mTag Metering with Registers
	ECMP Selection Example

	Feature Proposals for Future Versions
	References

