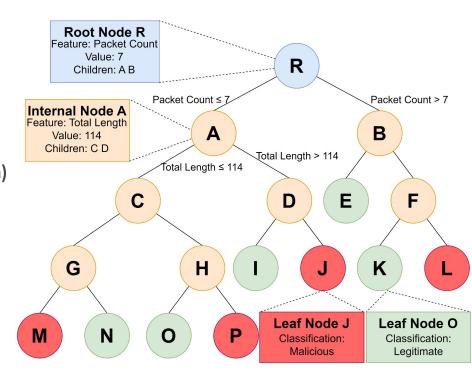
BACKORDERS: Using Random Forests to Detect DDoS Attacks in Programmable Data Planes

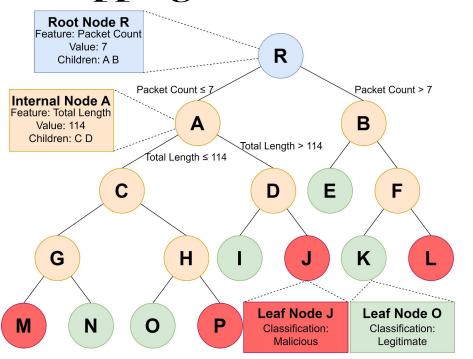
Bruno Coelho, Alberto Schaeffer-Filho

Federal University of Rio Grande do Sul (UFRGS), Brazil

Context

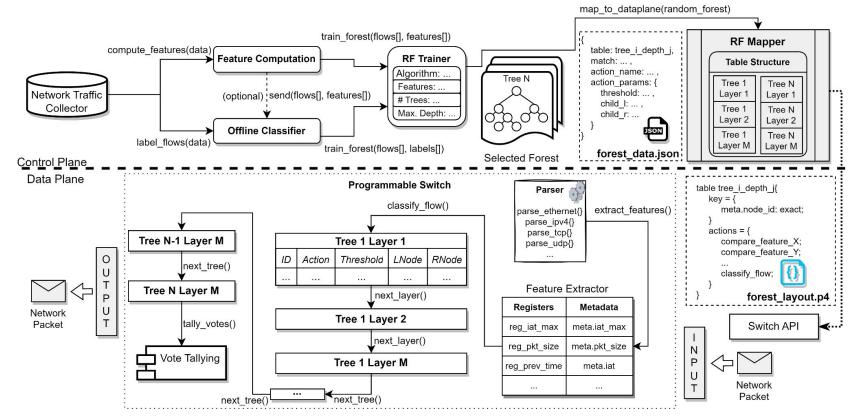

- Distributed Denial of Service (DDoS) attacks remain an issue
- Even short downtime can result in losses
 - Amazon's 1 hour of downtime cost over \$72 million on Prime Day 2018
- Detection is difficult
 - IP and Port Spoofing
 - Application-layer exploits
 - Accuracy vs Scalability

Motivation


- Programmable Data Planes (PDP)
 - Custom logic defined by software artifacts
 - Designed to process packets at line-rate
- Random Forests (RF)
 - Able to identify patterns to classify network traffic
 - Requires simple logic and arithmetic operations
 - Processing classification trees can be parallelized
 - Relatively compact data structures

Classification Tree Nodes

- Internal Nodes
 - **Feature**
 - Threshold value
 - Children
- Node structures are naturally recursive
 - A node contains another node (children)
- P4 does not support recursion
 - Cannot predict number of calls
- Leaf Nodes
 - Classification


Mapping nodes to the Data Plane

Match Value	A ation	Parameters			
Node ID	Action	Threshold	Child 1	Child 2	
0	compare_pkt_count	7	1	2	
1	compare_total_length	114	3	4	
2	compare_feature_B	у	5	6	
8	compare_feature_H	Z	15	16	

Match Value Node Identifier	Action	Parameters Classification		
5	classify_flow	LEGITIMATE		
9	classify_flow	LEGITIMATE		
10	classify_flow	MALICIOUS		
11	classify_flow	LEGITIMATE		
12	classify_flow	MALICIOUS		
13	classify_flow	MALICIOUS		

BACKORDERS Architecture

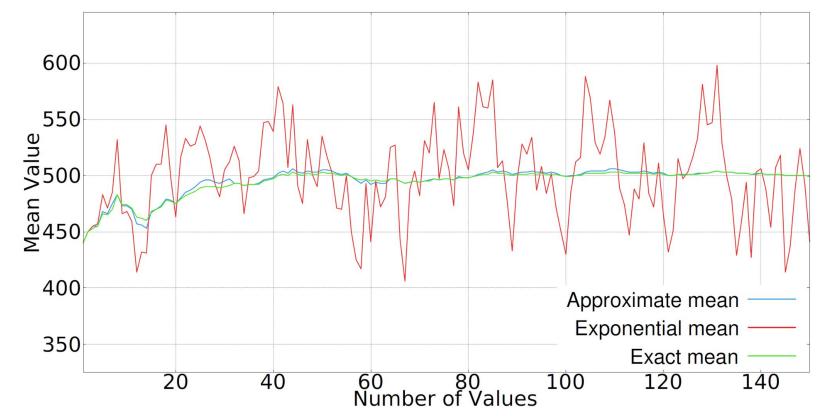
Feature extraction in the Data Plane

- RFs require flow features as input
- Most statistical features are simple
 - Sum, max, min, duration
- Some statistical features require complex operations
 - Quantiles, means, variance
- We focused on approximating moving means (averages)
 - P4 does not support division

i	V_i	$S_e(i)$	$S_a(i)$	$M_a(i)$	Mean	Formula: $S_a(i)$	Formula: $M_a(i)$
8	15	160	160	20	20	$S_e(8)$	$S_e(8)/8$

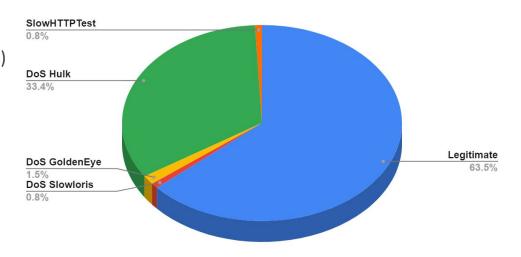
$$S_e(7) = 145$$
 $V_8 = 15$ $M_a(8) = \frac{160}{8} = 20$

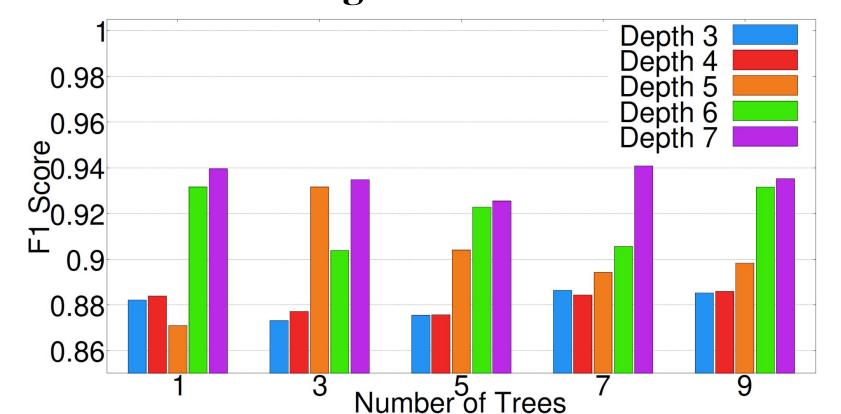
$$S_e(8) = S_a(8) = 145 + 15$$


, reserve Concerns the

i	V_i	$S_e(i)$	$S_a(i)$	$M_a(i)$	Mean	Formula: $S_a(i)$	Formula: $M_a(i)$
8	15	160	160	20	20	$S_e(8)$	$S_{e}(8)/8$
9	25	185	165	20.625	20.5	$S_a(8) - M_a(8) + V_9$	$S_a(9)/prev_pow2(9)$

$$V_9 = 25 S_a(9) = S_a(8) - M_a(8) + V_9$$


$$S_a(9) = 160 - 20 + 25 = 165$$


$$M_a(9) = \frac{S_a(9)}{prev_pow2(9)} M_a(9) = \frac{165}{8} = 20.625$$

Evaluation - Dataset

- CICIDS 2017 Dataset
 - 692,703 flows
 - 440,031 legitimate (63.52%)
 - 5,796 DoS Slowloris
 - 5,499 DoS SlowHTTPTest
 - 231,073 DoS Hulk
 - 10,293 DoS GoldenEye
 - 11 Heartbleed
 - Binary division of classes
 - Legitimate
 - DoS (including all classes)

Conclusion

- BACKORDERS
- Classification of network flow in programmable data planes
 - Assisted by Machine Learning technique
- Maps nodes into match+action table entries
 - Sequential evaluation as opposed to recursive
- Extraction of features in the data plane
 - Approximation of means
- Proof-of-concept for utilizing ML in the data plane
 - Small forests with over 90% accuracy

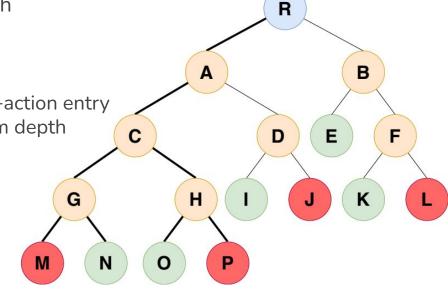
December 9th 2022

<u>Bruno Coelho</u>, Alberto Schaeffer-Filho blcoelho@inf.ufrgs.br, alberto@inf.ufrgs.br

Federal University of Rio Grande do Sul (UFRGS), Brazil

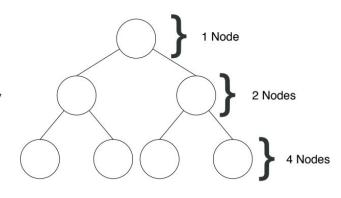
Thank you for your time!

i	V_{i}	$S_e(i)$	$S_a(i)$	$M_a(i)$	Mean	Formula: $S_a(i)$	Formula: $M_a(i)$
8	15	160	160	20	20	$S_e(8)$	$S_{e}(8)/8$
9	25	185	165	20.625	20.5	$S_a(8) - M_a(8) + V_9$	$S_a(9)/prev_pow2(9)$
10	10	195	154.375	19.29875	19.5	$S_a(9) - M_a(9) + V_{10}$	$S_a(10)/prev_pow2(10)$


$$V_{10} = 10$$

$$S_a(10) = 165 - 20.625 + 10 = 154.375$$

$$M_a(10) = \frac{154.375}{8} = 19.296875$$


Scalability Analysis

- Processing time is limited by maximum depth
 - O(M) per tree
 - O(NM) per forest
- Memory
 - Each node is mapped into a single match+action entry
 - Table entry number is limited by maximum depth
 - 1 layer = 1 node
 - 2 (full) layers = 3 nodes
 - 3 (full) layers = 7 nodes
 - \circ $O(2^M)$ per tree
 - \circ $O(N(2^M))$ per forest

Scalability Analysis

- Processing time is limited by maximum depth
 - O(M) per tree
 - O(NM) per forest
- Memory
 - Each node is mapped into a single match+action entry
 - Table entry number is limited by maximum depth
 - 1 layer = 1 node
 - 2 (full) layers = 3 nodes
 - 3 (full) layers = 7 nodes
 - \circ O(2^M) per tree
 - \circ O(N(2^M)) per forest

Scalability Analysis

# Trees	Max. Depth	Comparisons/tree	Total comparisons	Memory/tree	Total memory
1	6	6	6	63	63
1	7	7	7	127	127
	5	5	15	31	93
3	6	6	18	63	189
	7	7	21	127	381
5	5	5	25	31	155
	6	6	30	63	315
	7	7	35	127	635
9	6	6	54	63	567
	7	7	63	127	1143

Future Work

- Optimize memory utilized per feature
 - Current implementation may not scale for a high number of flows
- Include only the features that were selected by trees
 - Less memory utilization per flow
- Feature selection
 - Less registers
 - Lower depth