Compiling Packet Programs to dRMT Switches: Theory and Algorithms

at EuroP4 2022, Rome

<u>Balázs Vass^{1,2}, Ádám Fraknói³, Erika Bérczi-Kovács^{4,3,5}, Gábor Rétvári¹</u>

¹Budapest University of Technology and Economics (BME), Budapest, Hungary ²ELKH-BME Information Systems Research Group ³Eötvös Loránd University (ELTE), Budapest, Hungary ⁴Alfréd Rényi Institute of Mathematics, Budapest, Hungary ⁵MTA-ELTE Egerváry Research Group on Combinatorial Optimization

Nemzeti Kutatási, Fejleszté És Innovációs Hivatal **Motivation**

Motivation I.

- We witness more and more complex
 - P4 programs
 - programmable switch ASICs
- Nowadays: RMT architectures deployed (Intel Tofino)
- Drawbacks of RMT:
 - table memory: local to pipeline stage -> memory not used by one stage cannot be reclaimed by another
 - sequentially executes matches followed by actions as packets traverse pipeline stages.
- solution: distributed RMT (dRMT)

[SIGCOMM '17](with concrete HW design & cost analysis):

- moves table memories out of pipeline stages and into a centralized pool that is accessible through a crossbar.
- replaces RMT's pipeline stages with a cluster of processors that can execute match and action operations in any order

Motivation II.

- Mapping a P4 program to hardware is critical in compilation
 - P4 program represented as a DAG of match / action nodes + dependencies (ODG, operation dependency graph)
 - o abstract model of hardware resources
- Prior work on ODG embedding [SIGCOMM '17]:
 - o only cyclic embeddings the same scheme repeated to every packet to reduce compilation complexity
 - aim: minimize P:= # processors to achieve line rate
 - algorithmic issues:
 - ILP: no time guarantees
 - heuristics: no approximation guarantees
- Question: complexity of the problem, efficient algorithms

cycle proc.	0	1	2	3	4	5	6	
0	A_0	M_1	M_2	$A_1\&A_2$				
1		A_0	M_1	M_2	$A_1 \& A_2$			
0			A_0	M_1	M_2	$A_1 \& A_2$		
1				A_0	M_1	M_2	$A_1 \& A_2$	
(c)								

Fig. 2: The ODG representation of a toy program (a), where A_i and M_i stand for action and match nodes/operations. Supposing a processor can initiate ≤ 1 match per clock cycle, (b) illustrates a straightforward RMT-embedding, (c) encodes an optimal dRMT-embedding of the program, where P = 2.

<u>B. Vass</u>, Á. Fraknói, Erika Bérczi-Kovács, G. Rétvári

Compiling Packet Programs to dRMT Switches: Theory and Algorithms

Problem formulation

Simplified pipeline models

Model name:	BASIC	IPC1	WIDTH	WIDTH-IPC1	WIDTH-IPC2
New feature on top of the	(basic model)	Max. 1 packet per	arbitrary table widths	arbitrary table widths	arbitrary table widths
basic constraints		processor per cycle		+ IPC $=$ 1	+ IPC= 2 $(\leq 2$
		(IPC=1)			pkt./proc./cycle)

• BASIC:

- P4 program as ODG $D = (V, E), V = V_A \cup V_M$
 - match, action nodes and inter-dependencies
 - ΔM and ΔA : # proc. cycles to wait after a match/action starts
 - each processor in each cycle can initiate initiate up to \overline{M} parallel table searches
 - ... and modify up to \bar{A} action fields in parallel
- IPC1: each processor in each cycle can only start matches up to IPC=1 packets. Same for actions
- WIDTH: each match / action node has a width (measured in positive integers)

Theoretical Results

Results - Complexity

- The relaxed model is solvable in polynomial time
- Introducing width or Inter Packet Concurrency makes it NP-hard

Model name:	BASIC IPC1		WIDTH	WIDTH-IPC1	WIDTH-IPC2
New feature on top of the	(basic model)	Max. 1 packet per	arbitrary table widths	arbitrary table widths	arbitrary table widths
basic constraints		processor per cycle		+ IPC $=$ 1	+ IPC= 2 (≤ 2
		(IPC= 1)			pkt./proc./cycle)
Complexity	P	<i>N</i> 𝒫-hard	<i>N</i> 𝒫-hard	<i>NP</i> -hard	?

- Hint of proof for BASIC is polynomial:
 - max (#match nodes, #action nodes) / memory width: lower bound on P
 - this is enough, "almost greedy" embedding in O(|E| + |V|P).
- NP-hardnesses:
 - reductions to CLIQUE and EQUAL CARDINALITY PARTITION

<u>B. Vass</u>, Á. Fraknói, Erika Bérczi-Kovács, G. Rétvári

Compiling Packet Programs to dRMT Switches: Theory and Algorithms

(In-) approximability

Model name:	BASIC	IPC1	WIDTH	WIDTH-IPC1	WIDTH-IPC2
New feature on top of the	(basic model)	Max. 1 packet per	arbitrary table widths	arbitrary table widths	arbitrary table widths
basic constraints		processor per cycle		+ IPC $=$ 1	+ $IPC=2$ (≤ 2
		(IPC = 1)			pkt./proc./cycle)
Bad news: Inapproximable better than (.unless P=AP)	OPT	4/3*OPT	3/2*OPT	3/2*OPT	?
Good news: Constant approximable in	OPT	3*OPT	?	4*OPT	8*OPT

- Inapproximabilities: straightforward from the NP-hardness reductions
- Constant approximations:
 - There is a 4-approximating alg. for WIDTH-IPC1 (runs in $O(|V| \log |V| + |E|)$)
 - it becomes 3-approximating for IPC1
 - ...and trivially 8-approx for WIDTH-IPC2

Our greedy

• Intuitive idea:

Ο

- A variation of the First Fit Decreasing algorithm
 - take an arbitrary (random) topological order of the nodes
 - nodes with all predecessors embedded may be chosen to be embedded
- Each bin can host either match or action nodes
- We make each bin to use at least half of the width available
- This uses at most 2x2 more bins than the optimum only taking in account the widths
- This can be extended to a proper scheduling

```
Algorithm 1: WIDTH-IPC1 Our Greedy
   Input: ODG D = (V, E); W : V \to \mathbb{N}^+; \overline{M}, \overline{A}
   Output: PS: V \rightarrow \mathbb{N}^+
   begin
        i := 1: V' := V
 1
        while V' \neq \emptyset do
2
              a := list of action nodes with 0 indegrees, descending order of width
3
              m :=list of match nodes with 0 indegrees, descending order of width
4
               w_a := \text{sum of widths in } a
5
               w_m := \text{sum of widths in } m
 6
              current_usage := 0
7
              if w_m \geq 1/2\overline{M} and w_a \geq 1/2\overline{A} then
 8
                Go to line 12 or 19
 9
              if w_a \geq 1/2\overline{A} and w_m < 1/2\overline{M} then
10
                    Go to line 19
11
               while m[0] + current usage \leq \overline{M} do
12
                    current usage += m[0]
13
                    PS[m[0]] := i
14
                    V' := V' \setminus \{m[0]\}
15
                    m := m - m[0]
16
17
              i := i+1
              if w_m \ge 1/2\overline{M} then
18
                _ continue
               while a[0]+current usage \leq \overline{A} do
19
                    current usage += a[0]
20
                    PS[a[0]] := i
21
                    V' := V' \setminus \{a[0]\}
22
                    a := a - a[0]
23
              i := i + 1
24
        return PS
25
```

<u>B. Vass</u>, Á. Fraknói, Erika Bérczi-Kovács, G. Rétvári

Evaluation

Evaluation

- Graphs Egress, Ingress, Combined: derived from Switch.p4 (taken from the dRMT paper)
- Our greedy:
 - faster than the old rnd sieve Ο
 - yields at least as high throughput as rnd sieve Ο

				200		-		
Graph	Egress	Ingress	Combined		157	🛛 🖉 Upper bo	und 🛛 🗆 ILP 🖉 🖉 Our gre	edy 🛿 🛛 rnd sieve
	V = 104	V = 224	V = 328	Ins. 150				
Algorithm	<i>E</i> = 291	<i>E</i> = 930	E = 1221	LP re			113	
rnd_sieve i.e., [3]-greedy	13	21	30	he best I		85 85		
Our greedy	13	19	23	j 50	- 🗱 💹			
[3] ILP	11	17	21	6				
ILP lower bound	7	15	21	(Ea		Ingress	
			-	Lg	1000	ingress	CO	

Table 2: Best P values computed by different algorithms

100

Conclusion & Future Work

- Algorithmic issues of P4 program embedding to dRMT tackled
- A practically useful constant-approximation algorithm introduced
- Lessons learned could be used in future HW design
- Sharp bounds, better algorithms for the different pipeline models, etc.

Thank you for your attention! Q&A

<u>B. Vass</u>, Á. Fraknói, Erika Bérczi-Kovács, G. Rétvári

Compiling Packet Programs to dRMT Switches: Theory and Algorithms